Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.
Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.
에너지 사용량의 증가와 친환경 정책으로 인해 건물 에너지를 효율적으로 소비할 필요가 있으며, 이를 위해 딥러닝 기반 이상 전력 탐지가 수행되고 있다. 수집이 어려운 이상치 데이터의 특징으로 인해 Recurrent Neural Network(RNN) 기반 오토인코더를 활용한 복원 에러 기반으로 이상 탐지가 수행되고 있으나, 시계열 특징을 온전히 학습하는데 시간이 오래 걸리고 학습 데이터의 노이즈에 민감하다는 단점이 있다. 본 논문에서는 이러한 한계를 극복하기 위해 Temporal Convolutional Network(TCN)과 UnSupervised Anomaly Detection for multivariate time series(USAD)를 결합한 TCN-USAD를 제안한다. 제안된 모델은 TCN 기반 오토인코더와 두 개의 디코더와 적대적 학습을 사용하는 USAD 구조를 활용하여 빠르게 시계열 특징을 온전히 학습할 수 있고 강건한 이상 탐지가 가능하다. TCN-USAD의 성능을 입증하기 위해 2개의 건물 전력 사용량 데이터 세트를 사용하여 비교 실험을 수행한 결과, TCN 기반 오토인코더는 RNN 기반 오토 인코더 대비 빠르고 복원 성능이 우수하였으며, 이를 활용한 TCN-USAD는 다른 이상 탐지 모델 대비 약 20% 개선된 F1-Score를 달성하여 뛰어난 이상 탐지 성능을 보였다.
컴퓨터를 통해서 들어오는 다양한 형태의 침입을 효과적으로 탐지하기 위해서 이전에는 오용탐지 기법이 주로 이용되어 왔다. 오용탐지 기법은 이전에 알려지지 않은 침입 방법들을 효과적으로 탐지할 수 있기 때문이다. 하지만, 해당 기법에서는 정상적인 네트워크 접속 형태가 몇 가지 패턴으로 고정되어 있다고 가정한다. 이러한 이유 때문에 새로운 정상적인 네트워크 연결이 비정상행위로 탐지되기도 한다. 본 논문에서는 연관 마이닝 기법을 활용한 침입 탐지 방법을 제안한다. 논문에서 제안되는 방법은 패킷내 마이닝 단계와 패킷간 마이닝 두가지 단계로 구성된다. 제안된 방법의 성능은 대표적인 네트워크 침입 탐지 방법인 JAM과의 비교 실험을 통하여 평가하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권7호
/
pp.3093-3115
/
2020
Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.3946-3965
/
2018
Network anomaly detection in Software Defined Networking, especially the detection of DDoS attack, has been given great attention in recent years. It is convenient to build the Traffic Matrix from a global view in SDN. However, the monitoring and management of high-volume feature-rich traffic in large networks brings significant challenges. In this paper, we propose a moving window Principal Components Analysis based anomaly detection and mitigation approach to map data onto a low-dimensional subspace and keep monitoring the network state in real-time. Once the anomaly is detected, the controller will install the defense flow table rules onto the corresponding data plane switches to mitigate the attack. Furthermore, we evaluate our approach with experiments. The Receiver Operating Characteristic curves show that our approach performs well in both detection probability and false alarm probability compared with the entropy-based approach. In addition, the mitigation effect is impressive that our approach can prevent most of the attacking traffic. At last, we evaluate the overhead of the system, including the detection delay and utilization of CPU, which is not excessive. Our anomaly detection approach is lightweight and effective.
지금까지 발전 설비 터빈 블레이드의 이상 탐지는 사람에 의해 진행되어왔다. 하지만 발전 설비 노후화로 인한 이상 탐지 수요 증가와 터빈 블레이드의 이상을 검사하는 검사자 간의 기량 차로 인해 발생하는 검출 결과의 상이성으로 인해, 이러한 터빈 블레이드 이상 탐지 수요 증가와 인적 요소로 인해 발생하는 오류를 줄이고 높은 신뢰성의 터빈 블레이드 이상 검출성능을 안정적으로 제공할 수 있는 기법 개발의 필요성이 지속해서 제기되어 왔다. 이번 논문에서는 최근 다양한 분야에서 인상적인 성능 향상을 달성한 깊은 신경망을 이용한 발전 설비 터빈 블레이드의 이상 탐지 기술을 제안한다. 실험 결과는 제안된 기술이 인적 요소의 개입을 최소화함과 동시에 안정적인 이상 검출성능을 달성함을 증명한다.
Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.
기존의 망 이상 상태 탐지 시스템들은 주로 정상 상태의 시스템 사용률 등과 같은 통계 값으로 결정된 임계값을 기반으로 탐지하기 때문에 이상 상태임에도 불구하고 정상 상태와 비슷한 시스템 통계 값을 가지면 탐지하지 못하는 문제점이 있다. 이러한 단점들을 해결하기 위하여 본 논문에서는 인간면역체계의 학습, 적응, 기억 능력등의 특성을 이용하는 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델을 제안한다. 이를 위하여 인간면역 시스템의 수지상 세포 (Dendritic Cell)와 T 세포 사이의 상호 작용을 이용한 탐지 모델을 설계하고 각 구성 요소 및 기능을 정의한다. 중앙 집중 제어 노드는 각 라우터 노드로부터 전달받은 정보를 분석하여 대응 방법을 해당 라우터들에게 전달한다. 또한 라우터 노드는 학습을 통해 얻어진 데이터를 기반으로 이상 상태를 탐지할 뿐만 아니라 중앙 집중 제어 노드로부터 전달받은 정보를 이용하여 이상 상태를 처리한다. 최종적으로 제안된 이상 상태탐지 모델의 타당성을 검증하기 위하여 구성 모듈을 설계하고 flooding 공격에 대한 시뮬레이션을 수행한다.
본 논문에서는 IEC 61850 기반 자동화 변전소 네트워크에서의 이상 징후 탐지를 위한 MMS/GOOSE 패킷 정상행위 프로파일링 방법을 제안한다. 기존에 주로 사용되고 있는 시그니처(signature) 기반의 보안 솔루션은 제로데이(zero-day) 취약점을 이용한 APT 공격에 취약에 취약할 수밖에 없다. 최근 제어시스템 환경에서의 이상 탐지(anomaly detection) 연구가 이뤄지고 있지만, 아직까지 IEC 61850 변전소 환경에서의 이상 탐지에 대한 연구는 잘 알려져 있지 않다. 제안하는 기법은 MMS/GOOSE 패킷에 대한 3가지 전처리(3-phase preprocessing) 방법과 one-class SVM 알고리즘을 이용한 정상 행위 모델링 방법을 포함한다. 본 논문에서 제시하는 방법은 IEC 61850 변전소 네트워크에 대한 APT 공격 대응 솔루션으로 활용될 것을 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.