• Title/Summary/Keyword: Nematode concentration effect

Search Result 22, Processing Time 0.019 seconds

Control Efficacy of Entomopathogenic Microagent against Spodoptera exigua on Organic Chinese Cabbage (유기재배 배추포장 내 파밤나방에 대한 곤충병원성 미생물의 방제 효과)

  • Park, Jong-Ho;Hong, Sung-Jun;Han, Eun-Jung;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.797-811
    • /
    • 2015
  • This study was carried out to identify the control effect of entomopathogenic microagent against Spodoptera exigua on organic chinese cabbage. In laboratory condition, insecticidal activity of 4 commercial BT pesticides against S. exigua were lower than 10% against second instar S. exigua. The insecticidal activity of entomopathogenic nematode were 33.3%, 83.3% and 100% at the concentration of $1{\times}10^2$, $3{\times}10^2$, $1{\times}10^3nematodes/ml$, respectively. Mixture of BT and nematode showed growth inhibition against S. exigua larvae. S. exigua nucleopolyhedrovirus (SeNPV) of $10^5PIBs/ml$ showed more than 70% insecticial activity. The yield of SeNPV was increased as in higher initial inoculation concentration of NPV, food supply, and growth temperature increased. In greenhouse experiment, the control value of BT and nematode mixture treatment was higher than BT and nematode treatment alone against S. exigua. In treatment of $10^7PIBs/ml$ of SeNPV, S. exigua was controlled completely. In farm condition, mixture of microbial agent and organic agricultural material showed higher control value against lepidopteran pest including S. exigua than BT single treatment.

Decrease of Nematode Population by Introduction of Nematophagous Fungi into The Soil as Affected by Inoculum Concentration and Temperature in Vitro (선충 기생 전적 진균의 접종원 농도와 온도조건에 따른 성충감염 및 집단 감소효과)

  • 김희규;정미정;추호렬;박창석
    • Korean journal of applied entomology
    • /
    • v.27 no.3
    • /
    • pp.159-164
    • /
    • 1988
  • Five nematophagous fungi were evaluated for their nematicidal effect in vitro on Rhabditis sp. and Meloidogyne hapla in soil. Inocula of Arthrobotrys arthrobotryoides, A. conoides, A. oligospora, Dactylella lobata, and Fusarium oxyaporum were grown in moistened corn-sandy soil and chopped potato-sandy soil media, and incubated at 26$^{\circ}C$ for one week. The prepared inocula were incorporated in autoclaved sandy soil, mixing thoroughly at rates equ-invalent to 1:50, 1:100, 1:200, and 1:400, repectively, before 80g of the mixture carrying 100 Rhabditis sp. was put into petri plates. Nematophagous fungi effectively teduced the popuation of Rhabditis sp. in soil in a week or two following treatment of the incula at concentration of 1:50 and 1:100. The optimum was at $25^{\circ}C$ for nematicidial effect as high as 80-100%. The at the rate of 1:100 prepared incula were incorporated in auto-claved soil, where 100 Juveniles M. hapla were introduced per 80% soil. All fungi infected the M. hapla effectively in soil, caysing more than 90% mortality within one week. This result indicated the potential value of these fungi as promising biocontrol agents.

  • PDF

Purification Nematicidal Substance and Nematicidal Activity from Ginkgo biloba L. Outer Seedcoat (은행 외종피로부터 살선충 물질의 순수 분리와 활성)

  • Jang, Yu Ju;Hwang, Hyeon Jeong;Kim, Keun Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.1
    • /
    • pp.97-109
    • /
    • 2021
  • Plant parasitic nematodes are causing significant damage in crop production. There is a need to develop eco-friendly nematicide that reduces the damage of nematode and has little effect on the environment and human. In this study, we have isolated a substance having nematicidal activity from Ginkgo biloba L. outer seedcoat. Studies of G. biloba L. outer seedcoat are insufficient compared to the seed and leaves due to their odor and toxicity. The dried G. biloba L. outer seedcoat was extracted with dichloromethane:methanol (1:1) and fractionated into hexane, ethyl acetate and H2O. Four steps TLC were performed from EtOAc fraction to purely isolate GB4-3 with nematicidal activity. To compare nematicidal activity, G. biloba L. seedcoat methanol extract and purified GB4-3 were investigated in terms of treatment concentration and time. As a result, the nematicidal activity increased with concentration and time. In the place treated with 20 ㎍/mL of crude G. biloba L. seedcoat MeOH extract, strong activity appeared after 12 hours, and 46% nematicidal activity shown after 18 hours. About 69% of nematicidal activity was confirmed in the place where GB4-3 purified from outer seedcoat was treated with 20 ㎍/mL, and the possibility of development as nematicide was very high. This study could be used as a basic data for the development of a nematode preparation from G. biloba L. outer seedcoat.

Survival of Anisakis species larvae of chub mackerel (Scomber japonicus) in different kinds of condiments

  • Nam, U-Hwa;Lee, Seo-Young;Lee, Ji-Hyee;Kim, Jeong-Ho
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.249-253
    • /
    • 2021
  • Anisakiasis is a well-known zoonosis caused by ingestion of raw or thermally undercooked seafood product contaminated with live Anisakis nematode third stage larvae (L3). Several traditional processing techniques have been used to kill or remove the Anisakis larvae worldwide, but thermal processing or deep freezing are the most effective treatments to kill the Anisakis larvae. In this study, we investigated the survival of Anisakis larvae in several condiments (soy bean sauce, wasabi, vinegar, red pepper paste) commonly consumed when eating raw fish in Korea. We also examined several different media (NaCl solution, absolute alcohol, soju) to investigate their larvicidal effect. When directly exposed to various condiments, the most effective larvicidal effect was observed in the mixture of wasabi and soy bean sauce. When exposed to different NaCl solutions, the larvicidal ability became more effective as the concentration increased, but did not show 100% killing effect. In soju, the L3 were killed under less than 4 hr. We observed the larvicidal effects of several condiments in this study, but these results are thought to be carefully interpreted for actual use because all the condiments in this study showed the effect in hours and in general, the L3 are exposed to these condiments only for seconds before ingested in real situation.

Protective Effects of Pyrrosiae Folium on the 2% Glucose-Induced Toxicity in Caenorhabditis elegans (석위가 예쁜꼬마선충에서 Glucose로 유도된 독성에 미치는 영향)

  • Kim, Bong Seok;Lee, Byung Ju;Lee, Hyun Joo;An, Soon Young;Park, Zi Won;Yoon, Seon Hwa;Oh, Mi Jin;Kwon, Jin;Lee, Se Youn;Cha, Dong Seok;Oh, Chan Ho;Jeon, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.179-186
    • /
    • 2017
  • Pyrrosia lingua which belongs to Polypodiaceae has been used as a traditional medicine for the treatment of urinary system inflammation, urination disorder, and bronchitis. However, there are not enough phytochemical and pharmacological studies of P. lingua up to now. Here in this study, the protective effect of MeOH extract of whole plant of Pyrrosia lingua (MPL) against 2% glucose-induced toxicity was investigated using Caenorhabditis elegans (C. elegans) model system. We found that MPL significantly extended the lifespan of wild-type nematode under normal culture condition. MPL also effectively recovered the decreased lifespan caused by 2% glucose-toxicity. In addition, MPL efficiently attenuated the increased glucose concentration inside of nematode. Further studies evaluating diabetes-related factors revealed that MPL reduced both intracellular ROS and lipid accumulation which were up-regulated under 2% glucose supplement condition. Our data also showed that MPL improved the 2% glucose-induced shortened body movement of nematode. Lastly, we carried out genetic studies using several single gene knockout mutants to establish the possible target of MPL. Our results demonstrated that genes such as daf-2 and daf-16 were responsible for the protective activity of MPL against 2% glucose-induced toxicity. These results indicate that MPL exerts protective action against 2% glucose via regulation of insulin/IGF-1 sinaling pathway and FOXO activation.

Effect of Inoculation Concentration on Pathogenicity, Development, Propagation and Body Length of Entomopathogenic Nematode, Steinernema arenarium (Nematoda: Steinernematidae) (접종농도가 곤충병원성선충 Steinernema arenarium (Nematoda: Steinernematidae)의 병원성과 발육 증식 및 체장에 미치는 영향)

  • Han, Gun-Yeong;Lee, Dong-Woon;Choo, Ho-Yul
    • Korean journal of applied entomology
    • /
    • v.49 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • Effect of inoculation level on pathogenicity, development, and propagation of entomopathogenic nematode, Steinernema arenarium was investigated using the last instar of great wax moth, Galleria mellonella. Pathogenicity of S. arenarium was higher with increasing inoculation level representing 82% at the rate of 5 infective juveniles (IJs) while >98% at the rate of >10 IJs. The number of IJs penetrated into the host was 2.7, 5.0, 7.4, and 12.2 at the rate of 5, 10, 20, and 40 IJs, respectively while 24.3 at the rate of 80 IJs and 40.2 at the rate of 160 IJs. Inoculation level did not affect female adult size (4,616 to 6,444 ${\mu}m$) while affected male adult size (1,600 to 1,934 ${\mu}m$). The rate of stunted female adults was 70.2% at the inoculation level of 80 IJs and 63.7% at the inoculation level of 160 IJs. The number of progenies was 20,431, 26,696, 47,943, 50,516, 58,701, and 74,235 at the rate of 5, 10, 20, 40, 80, and 160 IJs, respectively. The body lengths of IJs were different depending on inoculation level ranging from 636 to 1,496 ${\mu}m$.

Effect of Some Herbal Extracts on Entomopathogenic Nematodes, Silkworm and Ground Beetles (몇 가지 한약재 추출물이 곤충병원성선충과 누에 및 먼지벌레에 미치는 영향)

  • Lee, Dong-Woon;Choi, Hyeon-Cheol;Kim, Tae-Su;Park, Jong-Kyun;Park, Jung-Chan;Yu, Hwang-Bin;Lee, Sang-Myoung;Choo, Ho-Yul
    • Korean journal of applied entomology
    • /
    • v.48 no.3
    • /
    • pp.335-345
    • /
    • 2009
  • Effect of four nematicidal herbal extracts (Daphne genkwa, Eugenia caryophyllata, Quisqualis indica and Zingiber officinale) and 3 acricidal herbal extracts (Pharbitis nil, Xanthium strumarium, and Desmodium caudatum) on entomopathobenic nematodes [Steinernema carpocapsae Pocheon strain (ScP) and Heterorhabditis sp. Gyeongsan strain (HG)], silkworm (Bombyx mori), and ground beetles (Synuchus sp.) were investigated in the laboratory and field. D. genkwa was highly toxic to SCP and HG (100% mortality) at the concentration of 5,000 ppm in X-plate. All the infective juveniles of HG were dead after 3 days by E. caryophyllata and Q. indica. The mortality of ScP and HG was below 10% by D. genkwa, D. caudatum, E. caryophyllata, Q. indica and Z. officinale at the concentration of 1,000 ppm two days after treatment while mortality of HG was 62.8% by D. genkwa at the concentration of 1,000 ppm in X-plate. However, 1,000 ppm had not effect on nematode survival and pathogenicity of ScP in sand column. On the contrary, E. caryophyllata had effect on pathogenicity of HG. Mean number of dead Galleria mellonella larva of HG was 0.5 in E. caryophyllata treatment. Q. indica did not effect silkworm reared on mulberry leaves at the treatment of 1,000 ppm in 10 days after treatment. However, there were 20.0 and 100% mortalities in the treatment of D. genkwa 3 and 10 days after treatment, respectively. The weight of silkworm was low in D. genkwa and did not pupate. The weight of pupa and cocoon were not different in E. caryophyllata, P. nil, Q. indica, X. strumarium and Z. officinale. D. genkwa, E. caryophyllata, P. nil, Q. indica and Z. officinale had no effect on ground beetles, Synuchus sp. in forest soil.

Effects of the Applications of Chitin and Chitosan on Soil Organisms

  • Eo, Jinu;Kim, Myung-Hyun;Choi, Soon-Kun;Bang, Hea-Son;Park, Kee-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.132-137
    • /
    • 2015
  • Effects of chitin and chitosan treatments on soil microorganisms and the mesofauna were investigated in a microcosm and a fumigated field experiment. Responses of microorganisms were determined using microbial phospholipid fatty acid (PLFA) analysis, whereas responses of the mesofauna were measured in terms of the abundances of nematodes and microarthropods. Soil nitrate concentration increased on the application of chitin. Overall, chitin promoted bacterial and fungal abundance, leading to an increase in abundance of free-living soil nematodes that feed on decomposers. The ratio of saturated to unsaturated fatty acids was highest in the chitin-treated soil. Chitosan had a minimal effect on the abundance of microorganisms; however, it reduced the abundance of collembolans in the microcosm experiment. These results indicate that the application of chitin has beneficial effects on the supply of nutrients and promotion of the abundance of soil organisms.

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.

Evaluation for Biocontrol Potentials of Nematophagous Fungi against Root-knot Nematode (뿌리혹 선충에 대한 선충 천적 기생균의 생물적 방제 효과)

  • 정미정;장성식;김희규;박창석;추호렬
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.382-388
    • /
    • 1993
  • Five nematophagous fungi, Arthrobotrys arthrobotryoides, A. conoides, A. oligospora, Dactylella lobata and Fusarium oxysporum were evaluated for nematicidal effect on Meloidogyne hapla in greenhouse. Treatment of nematophagous fungi reduced the root galling by M. hapla and increased red-pepper growth in naturally infested pot soil. Number of galling were significantly less inall pots in 4 different inoculum densities of 5 nematophagous fungi compared to untreated plots. Especially, treatment of F. oxysprum resutled significant reduction of root gall of red-pepper. The increased shoot growth was significantly higher in pretreated plots by A. arthrobotryoides, A. conoides, A. oligospora, D. lobata and F. oxysporum at inoculum concentration of 1:100 but other treatments were not significantly increased shoot growth. Two promising fungi, D. lobata and F. oxysporum were selected in greenhouse test and in vitro results of previously experiment and applied to field plot naturally infested by M. hapla serverely. Number of galls were remarkably fewer in plots treated with D. lobata and F. oxysporum at either 1:70 or 1:100 concentration compared to the untreated plots. The shoot growth of red-pepper was increased strikingly in the plots following the red-pepper was increased strikingly in the plots following the treatment of both fungus than greenhouse test.

  • PDF