• Title/Summary/Keyword: Neighboring Cell

Search Result 177, Processing Time 0.026 seconds

Mobile Tx Power Prediction-Based Call Admission Control for CDMA System (CDMA 시스템에서 이동국의 송신전력 예측에 기반을 둔 호 수락 방식)

  • 최성철;윤원식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.371-378
    • /
    • 2003
  • In Code Division Multiple Access (CDMA) system, the cell capacity is defined as the number of available channels in a cell, which is limited by the interferences. When a new call is accepted at its home cell, this adds the interference to the home and its neighboring cells. This paper proposes a call admission control based on mobile transmission power prediction. The home cell has enough capacity to admit new call and if home cell would have admitted a new call, it calculates the mobile transmission power. Also, its neighboring cell can predict the amount of interference using the predicted mobile transmission power. Thus, the new mobile is accepted by its home cell if QoS(Quality Of Service) is guaranteed in its neighboring cells. The simulation result shows that the proposed scheme largely reduces the outage probability in the neighboring cells.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

A Dynamic Channel Allocation Algorithm Based on Time Constraints in Cellular Mobile Networks

  • Lee Seong-Hoon
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.31-34
    • /
    • 2005
  • The new realtime applications like multimedia and realtime services in a wireless network will be dramatically increased. However, many realtime services of mobile hosts in a cell cannot be continued because of insufficiency of useful channels. Conventional channel assignment approaches didn't properly consider the problem to serve realtime applications in a cell. This paper proposes a new realtime channel assignment algorithm based on time constraint analysis of channel requests. The proposed algorithm dynamically borrows available channels from neighboring cells. It also supports a smooth handoff which continuously serves realtime applications of the mobile hosts.

  • PDF

Reverse link analysis of CDMA cellular systems with mixed cell sizes (혼합된 셀 크기를 갖는 CDMA 셀룰라 시스템에서 역방향 링크 용량 분석)

  • 전형구;신성문;권수근;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.481-488
    • /
    • 2000
  • The demands for mobile communication service are growing rapidly. In heavily populated areas, cell split is unavoidable to increase the capacity of the cellular system. Cell splitting makes a cellular system to have mixed cell sizes. For cell planning, it is necessary to analyze the reverse link capacity of a CDMA cellular system with mixed cell sizes. In this paper, we propose a method to calculate the reverse link capacity of a CDMA cellular system with mixed cell sizes. When a macro cell is split into three micro cells, as an example, we calculate the reverse link capacities for the three micro cells and the neighboring macro cells. The results show that as the radius of a micro cell decreases, the reverse link capacity of the micro cell increases, while those of the neighboring macro cells decrease.

  • PDF

Neighbor List Management to enable Fast Scanning and Efficient Handover in IEEE 802.16e-Based Femto-cell Systems (IEEE 802.16e 기반의 펨토셀 시스템에서 빠른 스캐닝 및 효율적인 핸드오버를 위한 이웃 기지국 리스트 관리 기법)

  • Nam, Ji-Hee;Shin, Jung-Chae;Yoon, Cul-Sik;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.445-457
    • /
    • 2009
  • Recently, there are growing interests in femto-cell for providing indoor users with various broadband multimedia services more efficiently. The technical issues regarding femto-cell such as interference management, self-organization, and resource allocation are now being intensively studied and investigated by researchers worldwide. In this paper, two novel schemes of neighboring cell list(NCL) management are proposed for the IEEE 802.16e system where a macro-cell and huge number of femto-cells coexist. The proposed schemes, named MS location-based neighboring cell list management and BS type-based neighboring cell list management, enable a mobile station(MS) to perform fast scanning and efficient handover by means of preselecting the candidate target femto-cells with high possibility for handover. The simulation result shows that the proposed schemes improve the MS's handover-related performance in terms of scanning power and scanning time compared with the conventional managements scheme of IEEE 802.16e system.

A Dynamic Channel Allocation Algorithm Based on Time Constraints in Cellular Mobile Networks

  • Lee, Seong-Hoon;Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2003
  • The new realtime applications like multimedia and realtime services in a wireless network will be dramatically increased. However, many realtime services of mobile hosts in a cell cannot be continued because of insufficiency of useful channels. Conventional channel assignment approaches didn't properly consider the problem to serve realtime applications in a cell. This paper proposes a new realtime channel assignment algorithm based on time constraint analysis of channel requests. The proposed algorithm dynamically borrows available channels from neighboring cells. It also supports a smooth handoff which continuously serves realtime applications of the mobile hosts.

SIR based Beam Switching in Distributed Controlled Cellular Systems (분산제어되는 셀룰라 시스템에서 SIR기반 빔 스위칭 기법)

  • Kim, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.452-456
    • /
    • 2010
  • SIR based beam switching in distributed controlled cellular systems is proposed to reduce intercell interference. Compared with Random beam switching that beam switching pattern is randomly selected and cannot avoid beam collision between neighboring cell, SIR based beam switching update its switching pattern based on SIR report from mobile. Neighboring cells independently update their switching patterns and the updated patterns converge to the patterns that minimize beam collision. We shows SIR base beam switching has 20% gain compared with random beam switching in two neighboring cell model.

Migration and Interaction of Multi-protons in Zinc-doped Barium Zirconate (Zn-doped BaZrO3에서의 멀티-프로톤 전도와 상호작용)

  • Jeong, Yong-Chan;Kim, Dae-Hee;Kim, Byung-Kook;Kim, Yeong-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.977-982
    • /
    • 2011
  • Migration and interaction of multi-protons in a zinc-doped barium zirconate (Zn-doped $BaZrO_3$) super cell were investigated using a density functional theory. O ions in the super cell form interconnected octahedrons with Zr or Zn ions positioned in their centers and Ba ions positioned among the eight octahedrons. When one proton was added to the super cell, the energy barrier of 0.80 eV for proton transfer from the first to second nearest O ion sites from the Zn ion reached its highest value. When two protons were added to the super cell, the two protons preferred the first nearest O ions from the Zn ion. The two protons were accommodated by pushing the neighboring Zn ion further away from the center of the octahedron. Energy barriers for proton transfer from the Zn-octahedron to the neighboring Zr-octahedron were spread in the range of 0.36 ~ 1.02 eV.

Cross section generation for a conceptual horizontal, compact high temperature gas reactor

  • Junsu Kang;Volkan Seker;Andrew Ward;Daniel Jabaay;Brendan Kochunas;Thomas Downar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.933-940
    • /
    • 2024
  • A macroscopic cross section generation model was developed for the conceptual horizontal, compact high temperature gas reactor (HC-HTGR). Because there are many sources of spectral effects in the design and analysis of the core, conventional LWR methods have limitations for accurate simulation of the HC-HTGR using a neutron diffusion core neutronics simulator. Several super-cell model configurations were investigated to consider the spectral effect of neighboring cells. A new history variable was introduced for the existing library format to more accurately account for the history effect from neighboring nodes and reactivity control drums. The macroscopic cross section library was validated through comparison with cross sections generated using full core Monte Carlo models and single cell cross section for both 3D core steady-state problems and 2D and 3D depletion problems. Core calculations were then performed with the AGREE HTR neutronics and thermal-fluid core simulator using super-cell cross sections. With the new history variable, the super-cell cross sections were in good agreement with the full core cross sections even for problems with significant spectrum change during fuel shuffling and depletion.

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.