Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.12.977

Migration and Interaction of Multi-protons in Zinc-doped Barium Zirconate  

Jeong, Yong-Chan (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Kim, Dae-Hee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Kim, Byung-Kook (High Temperature Energy Material Center, Korea Institute of Science and Technology (KIST))
Kim, Yeong-Cheol (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
Publication Information
Korean Journal of Metals and Materials / v.49, no.12, 2011 , pp. 977-982 More about this Journal
Abstract
Migration and interaction of multi-protons in a zinc-doped barium zirconate (Zn-doped $BaZrO_3$) super cell were investigated using a density functional theory. O ions in the super cell form interconnected octahedrons with Zr or Zn ions positioned in their centers and Ba ions positioned among the eight octahedrons. When one proton was added to the super cell, the energy barrier of 0.80 eV for proton transfer from the first to second nearest O ion sites from the Zn ion reached its highest value. When two protons were added to the super cell, the two protons preferred the first nearest O ions from the Zn ion. The two protons were accommodated by pushing the neighboring Zn ion further away from the center of the octahedron. Energy barriers for proton transfer from the Zn-octahedron to the neighboring Zr-octahedron were spread in the range of 0.36 ~ 1.02 eV.
Keywords
fuel cells; sintering; conductivity; computer simulation; barium zirconate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 H. lwahara, H. Uchida, and S. Tanaka, Solid State lonics 9-10, 1021 (1983).   DOI
2 K. D. Kreuer, Chem. Mater. 8, 610 (1996).   DOI   ScienceOn
3 K. D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).   DOI   ScienceOn
4 K. D. Kreuer, Solid State Ionics 125, 285 (1999).   DOI   ScienceOn
5 T. Schober and H. G. Bohn, Solid State Electron. 127, 351 (2000).
6 H. G. Bohn and T. Schober, J. Am. Ceram. Soc. 83, 768 (2000).
7 A. Sin, B. El. Montaser, P. Odier, and F. Weiss J. Am. Ceram. Soc. 85, 1928 (2002).   DOI   ScienceOn
8 A. M. Azad, S. Subramaniam, and T. W. Dung, J. Alloys Comp. 334, 118 (2002).   DOI   ScienceOn
9 P. Babilo and S. M. Haile, J. Am. Ceram. Soc. 88, 2362 (2005).   DOI   ScienceOn
10 M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, Phys. Rev. B 76, 054307 (2007).
11 B. Merinov and W. Goddard III, J. Chem. Phys. 130, 194707 (2009).   DOI   ScienceOn
12 M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher, and L. E. Fernandez, J. Chem. Phys. 132, 214709 (2010).   DOI   ScienceOn
13 D. H. Kim, B. K. Kim, and Y. C. Kim, Solid State Ionics (In press).
14 Y. C. Jeong, D. H. Kim, B. K. Kim, and Y. C. Kim, J. Kor. Ceram. Soc. 48, 195 (2011).   DOI   ScienceOn
15 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).   DOI   ScienceOn
16 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).   DOI   ScienceOn
17 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).   DOI   ScienceOn
18 P. E. Blochl, Phys. Rev. B 50, 17953 (1994).   DOI   ScienceOn
19 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
20 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).   DOI
21 D. Sheppard and R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).   DOI   ScienceOn
22 P. G. Sundell, M. E. Bjorketun, and G. Wahnstrom, Phys. Rev. B 76, 094301 (2007).   DOI
23 H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Solid State Ionics 3-4, 359 (1981).   DOI