DOI QR코드

DOI QR Code

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kumar, Vijay (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Goutam, Ravi Shankar (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kumar, Shiv (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Lee, Unjoo (Department of Electrical Engineering, Hallym University) ;
  • Kim, Jaebong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
  • Received : 2021.03.05
  • Accepted : 2021.08.16
  • Published : 2021.10.31

Abstract

Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Keywords

Acknowledgement

This article was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science, and Technology of Korea (2016R1D1A1B02008770, 2018M3C7A1056285, and 2021M3H9A1097557).

References

  1. Artinger, M., Blitz, I., Inoue, K., Tran, U., and Cho, K.W. (1997). Interaction of goosecoid and brachyury in Xenopus mesoderm patterning. Mech. Dev. 65, 187-196. https://doi.org/10.1016/S0925-4773(97)00073-7
  2. Beddington, R.S. and Robertson, E.J. (1999). Axis development and early asymmetry in mammals. Cell 96, 195-209. https://doi.org/10.1016/S0092-8674(00)80560-7
  3. Blythe, S.A., Reid, C.D., Kessler, D.S., and Klein, P.S. (2009). Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev. Dyn. 238, 1422-1432. https://doi.org/10.1002/dvdy.21931
  4. Borchers, A. and Pieler, T. (2010). Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes (Basel) 1, 413-426. https://doi.org/10.3390/genes1030413
  5. Cho, K.W., Blumberg, B., Steinbeisser, H., and De Robertis, E.M. (1991). Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111-1120. https://doi.org/10.1016/0092-8674(91)90288-a
  6. Christian, J.L. and Moon, R.T. (1993). Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13-28. https://doi.org/10.1101/gad.7.1.13
  7. Danilov, V., Blum, M., Schweickert, A., Campione, M., and Steinbeisser, H. (1998). Negative autoregulation of the organizer-specific homeobox gene goosecoid. J. Biol. Chem. 273, 627-635. https://doi.org/10.1074/jbc.273.1.627
  8. De Robertis, E.M., Blum, M., Niehrs, C., and Steinbeisser, H. (1992). Goosecoid and the organizer. Dev. Suppl. 167-171.
  9. De Robertis, E.M. and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285-308. https://doi.org/10.1146/annurev.cellbio.20.011403.154124
  10. De Robertis, E.M., Larrain, J., Oelgeschlager, M., and Wessely, O. (2000). The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1, 171-181. https://doi.org/10.1038/35042039
  11. Dixon Fox, M. and Bruce, A.E. (2009). Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b. Development 136, 1675-1685. https://doi.org/10.1242/dev.031161
  12. Fainsod, A., Steinbeisser, H., and De Robertis, E.M. (1994). On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 13, 5015-5025. https://doi.org/10.1002/j.1460-2075.1994.tb06830.x
  13. Ferreiro, B., Artinger, M., Cho, K., and Niehrs, C. (1998). Antimorphic goosecoids. Development 125, 1347-1359. https://doi.org/10.1242/dev.125.8.1347
  14. Fetka, I., Doederlein, G., and Bouwmeester, T. (2000). Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus. Mech. Dev. 93, 49-58. https://doi.org/10.1016/S0925-4773(00)00265-3
  15. Harland, R. (2000). Neural induction. Curr. Opin. Genet. Dev. 10, 357-362. https://doi.org/10.1016/S0959-437X(00)00096-4
  16. Harland, R. and Gerhart, J. (1997). Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611-667. https://doi.org/10.1146/annurev.cellbio.13.1.611
  17. Hwang, Y.S., Lee, H.S., Roh, D.H., Cha, S., Lee, S.Y., Seo, J.J., Kim, J., and Park, M.J. (2003). Active repression of organizer genes by C-terminal domain of PV.1. Biochem. Biophys. Res. Commun. 308, 79-86. https://doi.org/10.1016/S0006-291X(03)01321-4
  18. Jackson, B.C., Carpenter, C., Nebert, D.W., and Vasiliou, V. (2010). Update of human and mouse forkhead box (FOX) gene families. Hum. Genomics 4, 345-352. https://doi.org/10.1186/1479-7364-4-5-345
  19. Katoh, M., Igarashi, M., Fukuda, H., Nakagama, H., and Katoh, M. (2013). Cancer genetics and genomics of human FOX family genes. Cancer Lett. 328, 198-206. https://doi.org/10.1016/j.canlet.2012.09.017
  20. Katoh, M. and Katoh, M. (2004). Human FOX gene family (Review). Int. J. Oncol. 25, 1495-1500.
  21. Kumar, S., Umair, Z., Kumar, V., Kumar, S., Lee, U., and Kim, J. (2020). Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos. Sci. Rep. 10, 16780. https://doi.org/10.1038/s41598-020-73662-4
  22. Kumar, S., Umair, Z., Kumar, V., Lee, U., Choi, S.C., and Kim, J. (2019). Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression. BMB Rep. 52, 403-408. https://doi.org/10.5483/bmbrep.2019.52.6.085
  23. Kumar, V., Umair, Z., Kumar, S., Lee, U., and Kim, J. (2021). Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos. Biochem. Biophys. Res. Commun. 559, 168-175. https://doi.org/10.1016/j.bbrc.2021.04.048
  24. Kuroda, H., Wessely, O., and De Robertis, E.M. (2004). Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol. 2, E92. https://doi.org/10.1371/journal.pbio.0020092
  25. Latinkic, B.V. and Smith, J.C. (1999). Goosecoid and mix.1 repress Brachyury expression and are required for head formation in Xenopus. Development 126, 1769-1779. https://doi.org/10.1242/dev.126.8.1769
  26. Latinkic, B.V., Umbhauer, M., Neal, K.A., Lerchner, W., Smith, J.C., and Cunliffe, V. (1997). The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Genes Dev. 11, 3265-3276. https://doi.org/10.1101/gad.11.23.3265
  27. Lee, H.C., Tseng, W.A., Lo, F.Y., Liu, T.M., and Tsai, H.J. (2009). FoxD5 mediates anterior-posterior polarity through upstream modulator Fgf signaling during zebrafish somitogenesis. Dev. Biol. 336, 232-245. https://doi.org/10.1016/j.ydbio.2009.10.001
  28. Lee, H.K., Lee, H.S., and Moody, S.A. (2014). Neural transcription factors: from embryos to neural stem cells. Mol. Cells 37, 705-712. https://doi.org/10.14348/MOLCELLS.2014.0227
  29. Lee, S.Y., Lee, H.S., Moon, J.S., Kim, J.I., Park, J.B., Lee, J.Y., Park, M.J., and Kim, J. (2004). Transcriptional regulation of Zic3 by heterodimeric AP-1(c-Jun/c-Fos) during Xenopus development. Exp. Mol. Med. 36, 468-475. https://doi.org/10.1038/emm.2004.59
  30. Lemaire, P. and Kodjabachian, L. (1996). The vertebrate organizer: structure and molecules. Trends Genet. 12, 525-531. https://doi.org/10.1016/S0168-9525(97)81401-1
  31. Mailhos, C., Andre, S., Mollereau, B., Goriely, A., Hemmati-Brivanlou, A., and Desplan, C. (1998). Drosophila Goosecoid requires a conserved heptapeptide for repression of paired-class homeoprotein activators. Development 125, 937-947. https://doi.org/10.1242/dev.125.5.937
  32. Moore, K.B., Mood, K., Daar, I.O., and Moody, S.A. (2004). Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55-67. https://doi.org/10.1016/S1534-5807(03)00395-2
  33. Neilson, K.M., Klein, S.L., Mhaske, P., Mood, K., Daar, I.O., and Moody, S.A. (2012). Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev. Biol. 365, 363-375. https://doi.org/10.1016/j.ydbio.2012.03.004
  34. Niehrs, C., Keller, R., Cho, K.W., and De Robertis, E.M. (1993). The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491-503. https://doi.org/10.1016/0092-8674(93)90069-3
  35. Niehrs, C., Steinbeisser, H., and De Robertis, E.M. (1994). Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid. Science 263, 817-820. https://doi.org/10.1126/science.7905664
  36. Nieto, M.A. (1999). Reorganizing the organizer 75 years on. Cell 98, 417-425. https://doi.org/10.1016/S0092-8674(00)81971-6
  37. Nieuwkoop, P.D. and Nigtevecht, G.V. (1954). Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. Development 2, 175-193. https://doi.org/10.1242/dev.2.3.175
  38. Oelgeschlager, M., Kuroda, H., Reversade, B., and De Robertis, E.M. (2003). Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4, 219-230. https://doi.org/10.1016/S1534-5807(02)00404-5
  39. Pohl, B.S. and Knochel, W. (2005). Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344, 21-32. https://doi.org/10.1016/j.gene.2004.09.037
  40. Rivera-Perez, J.A., Mallo, M., Gendron-Maguire, M., Gridley, T., and Behringer, R.R. (1995). Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121, 3005-3012. https://doi.org/10.1242/dev.121.9.3005
  41. Roskoski, R., Jr. (2020). Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol. Res. 152, 104609. https://doi.org/10.1016/j.phrs.2019.104609
  42. Ryu, H., Lee, H., Lee, J., Noh, H., Shin, M., Kumar, V., Hong, S., Kim, J., and Park, S. (2021). The molecular dynamics of subdistal appendages in multi-ciliated cells. Nat. Commun. 12, 612. https://doi.org/10.1038/s41467-021-20902-4
  43. Sander, V., Reversade, B., and De Robertis, E.M. (2007). The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J. 26, 2955-2965. https://doi.org/10.1038/sj.emboj.7601705
  44. Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L.K., and De Robertis, E.M. (1994). Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779-790. https://doi.org/10.1016/0092-8674(94)90068-x
  45. Seiliez, I., Thisse, B., and Thisse, C. (2006). FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation. Dev. Biol. 290, 152-163. https://doi.org/10.1016/j.ydbio.2005.11.021
  46. Sherman, J.H., Karpinski, B.A., Fralish, M.S., Cappuzzo, J.M., Dhindsa, D.S., Thal, A.G., Moody, S.A., LaMantia, A.S., and Maynard, T.M. (2017). Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Genesis 55, e23031. https://doi.org/10.1002/dvg.23031
  47. Shim, S., Bae, N., Park, S.Y., Kim, W.S., and Han, J.K. (2005). Isolation of Xenopus FGF-8b and comparison with FGF-8a. Mol. Cells 19, 310-317.
  48. Smith, S.T. and Jaynes, J.B. (1996). A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122, 3141-3150. https://doi.org/10.1242/dev.122.10.3141
  49. Spemann, H. (1967). Embryonic Development and Induction (New York: Hafner Publishing Company).
  50. Steinbeisser, H., Fainsod, A., Niehrs, C., Sasai, Y., and De Robertis, E.M. (1995). The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J. 14, 5230-5243. https://doi.org/10.1002/j.1460-2075.1995.tb00208.x
  51. Sullivan, S.A., Akers, L., and Moody, S.A. (2001). foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. Dev. Biol. 232, 439-457. https://doi.org/10.1006/dbio.2001.0191
  52. Thisse, C., Thisse, B., Halpern, M.E., and Postlethwait, J.H. (1994). Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol. 164, 420-429. https://doi.org/10.1006/dbio.1994.1212
  53. Ulmer, B., Tingler, M., Kurz, S., Maerker, M., Andre, P., Monch, D., Campione, M., Deissler, K., Lewandoski, M., Thumberger, T., et al. (2017). A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci. Rep. 7, 43010. https://doi.org/10.1038/srep43010
  54. Umair, Z., Kumar, S., Kim, D.H., Rafiq, K., Kumar, V., Kim, S., Park, J.B., Lee, J.Y., Lee, U., and Kim, J. (2018). Ventx1.1 as a direct repressor of early neural gene zic3 in Xenopus laevis. Mol. Cells 41, 1061-1071.
  55. Umair, Z., Kumar, S., Rafiq, K., Kumar, V., Reman, Z.U., Lee, S.H., Kim, S., Lee, J.Y., Lee, U., and Kim, J. (2020). Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos. Anim. Cells Syst. (Seoul) 24, 359-370. https://doi.org/10.1080/19768354.2020.1847732
  56. Yan, B., Neilson, K.M., and Moody, S.A. (2009). foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev. Biol. 329, 80-95. https://doi.org/10.1016/j.ydbio.2009.02.019
  57. Yao, J. and Kessler, D.S. (2001). Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann's organizer. Development 128, 2975-2987. https://doi.org/10.1242/dev.128.15.2975
  58. Yasuo, H. and Lemaire, P. (2001). Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae. Development 128, 3783-3793. https://doi.org/10.1242/dev.128.19.3783
  59. Yoon, J., Kim, J.H., Kim, S.C., Park, J.B., Lee, J.Y., and Kim, J. (2014). PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos. Mol. Cells 37, 220-225. https://doi.org/10.14348/MOLCELLS.2014.2302
  60. Yoon, J., Kim, J.H., Lee, O.J., Lee, S.Y., Lee, S.H., Park, J.B., Lee, J.Y., Kim, S.C., and Kim, J. (2013). AP-1(c-Jun/FosB) mediates xFoxD5b expression in Xenopus early developmental neurogenesis. Int. J. Dev. Biol. 57, 865-872. https://doi.org/10.1387/ijdb.130163jk
  61. Yu, J.K., Holland, N.D., and Holland, L.Z. (2002). An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289-297. https://doi.org/10.1002/dvdy.10173
  62. Yu, S.B., Umair, Z., Kumar, S., Lee, U., Lee, S.H., Kim, J.I., Kim, S., Park, J.B., Lee, J.Y., and Kim, J. (2016). xCyp26c induced by inhibition of BMP signaling is involved in anterior-posterior neural patterning of Xenopus laevis. Mol. Cells 39, 352-357. https://doi.org/10.14348/MOLCELLS.2016.0006
  63. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. https://doi.org/10.1186/gb-2008-9-9-r137