DOI QR코드

DOI QR Code

Zn-doped BaZrO3에서의 멀티-프로톤 전도와 상호작용

Migration and Interaction of Multi-protons in Zinc-doped Barium Zirconate

  • 정용찬 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 김대희 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 김병국 (한국과학기술연구원 고온에너지재료센터) ;
  • 김영철 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Jeong, Yong-Chan (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Byung-Kook (High Temperature Energy Material Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Yeong-Cheol (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2011.09.22
  • 발행 : 2011.12.25

초록

Migration and interaction of multi-protons in a zinc-doped barium zirconate (Zn-doped $BaZrO_3$) super cell were investigated using a density functional theory. O ions in the super cell form interconnected octahedrons with Zr or Zn ions positioned in their centers and Ba ions positioned among the eight octahedrons. When one proton was added to the super cell, the energy barrier of 0.80 eV for proton transfer from the first to second nearest O ion sites from the Zn ion reached its highest value. When two protons were added to the super cell, the two protons preferred the first nearest O ions from the Zn ion. The two protons were accommodated by pushing the neighboring Zn ion further away from the center of the octahedron. Energy barriers for proton transfer from the Zn-octahedron to the neighboring Zr-octahedron were spread in the range of 0.36 ~ 1.02 eV.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Solid State Ionics 3-4, 359 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
  2. H. lwahara, H. Uchida, and S. Tanaka, Solid State lonics 9-10, 1021 (1983). https://doi.org/10.1016/0167-2738(83)90125-X
  3. K. D. Kreuer, Chem. Mater. 8, 610 (1996). https://doi.org/10.1021/cm950192a
  4. K. D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  5. K. D. Kreuer, Solid State Ionics 125, 285 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
  6. T. Schober and H. G. Bohn, Solid State Electron. 127, 351 (2000).
  7. H. G. Bohn and T. Schober, J. Am. Ceram. Soc. 83, 768 (2000).
  8. A. Sin, B. El. Montaser, P. Odier, and F. Weiss J. Am. Ceram. Soc. 85, 1928 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00382.x
  9. A. M. Azad, S. Subramaniam, and T. W. Dung, J. Alloys Comp. 334, 118 (2002). https://doi.org/10.1016/S0925-8388(01)01785-6
  10. P. Babilo and S. M. Haile, J. Am. Ceram. Soc. 88, 2362 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
  11. M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, Phys. Rev. B 76, 054307 (2007).
  12. B. Merinov and W. Goddard III, J. Chem. Phys. 130, 194707 (2009). https://doi.org/10.1063/1.3122984
  13. M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher, and L. E. Fernandez, J. Chem. Phys. 132, 214709 (2010). https://doi.org/10.1063/1.3447377
  14. D. H. Kim, B. K. Kim, and Y. C. Kim, Solid State Ionics (In press).
  15. Y. C. Jeong, D. H. Kim, B. K. Kim, and Y. C. Kim, J. Kor. Ceram. Soc. 48, 195 (2011). https://doi.org/10.4191/KCERS.2011.48.2.195
  16. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
  17. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  18. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  19. P. E. Blochl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  22. D. Sheppard and R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008). https://doi.org/10.1063/1.2841941
  23. P. G. Sundell, M. E. Bjorketun, and G. Wahnstrom, Phys. Rev. B 76, 094301 (2007). https://doi.org/10.1103/PhysRevB.76.094301