• Title/Summary/Keyword: Negative Binomial Regression

Search Result 167, Processing Time 0.028 seconds

Study on the Development of Truck Traffic Accident Prediction Models and Safety Rating on Expressways (고속도로 화물차 교통사고 건수 예측모형 및 안전등급 개발 연구)

  • Jungeun Yoon;Harim Jeong;Jangho Park;Donghyo Kang;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • In this study, the number of truck traffic accidents was predicted by using Poisson and negative binomial regression analysis to understand what factors affect accidents using expressway data. Significant variables in the truck traffic accident prediction model were continuous driving time, link length, truck traffic volume. number of bridges and number of drowsy shelters. The calculated LOSS rating was expressed on the national expressway network to diagnose the risk of truck accidents. This is expected to be used as basic data for policy establishment to reduce truck accidents on expressways.

Comparative Analysis on the Characteristics and Models of Traffic Accidents by Day and Nighttime in the Case of Cheongju 4-legged ignalized Intersections (주·야간 교통사고의 특성 및 사고모형 비교분석 -청주시 4지 신호교차로를 중심으로 -)

  • Yoo, Doo Seon;Oh, Sang Jin;Kim, Tae Young;Park, Byung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.181-189
    • /
    • 2008
  • The purpose of this study is to comparatively analyze the characteristics and models of traffic accidents by day and nighttime. In pursuing the above, this study gives particular attentions to testing the differences and developing the models (multiple linear and non-linear and Poisson and negative binomial regression) using the data of Cheongju 4-legged signalized intersections. The main results analyzed are as follows. First, the differences between day and nighttime accidents were defined. Second, 12 accident models which are all statistically significant were developed. Finally, the differences between day and nighttime models were comparatively analyzed using the common and specific variables.

Analysis of Accident Characteristics and Improvement Strategies of Flash Signal-operated Intersection in Seoul (서울시 점멸신호 운영에 따른 교통사고 분석 및 개선방안에 관한 연구)

  • Kim, Seung-Jun;Park, Byung-Jung;Lee, Jin-Hak;Kim, Ok-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.54-63
    • /
    • 2014
  • Traffic accident frequency and severity level in Korea are known to be very serious. Especially the number of pedestrian fatalities was much worse and 1.6 time higher than the OECD average. According to the National Police Agency, the flash signals are reported to have many safety benefits as well as travel time reduction, which is opposed to the foreign studies. With this background of expanding the flash signal, this research aims to investigate the overall impact of the flash signal operation on safety, investigating and comparing the accident occurrence on the flash signal and the full signal intersections. For doing this accident prediction models for both flash and full signal intersections were estimated using independent variables (geometric features and traffic volume) and 3-year (2011-2013) accident data collected in Seoul. Considering the rare and random nature of accident occurrence and overdispersion (variance > mean) of the data, the negative binomial regression model was applied. As a result, installing wider crosswalk and increasing the number of pedestrian push buttons seemed to increase the safety of the flash signal intersections. In addition, the result showed that the average accident occurrence at the flash signal intersections was higher than at the full signal-operated intersections, 9% higher with everything else the same.

The Hazardous Expressway Sections for Drowsy Driving Using Digital Tachograph in Truck (화물차 DTG 데이터를 활용한 고속도로 졸음운전 위험구간 분석)

  • CHO, Jongseok;LEE, Hyunsuk;LEE, Jaeyoung;KIM, Ducknyung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.160-168
    • /
    • 2017
  • In the past 10 years, the accidents caused by drowsy driving have occupied about 23% of all traffic accidents in Korea expressway network and this rate is the highest one among all accident causes. Unlike other types of accidents caused by speeding and distraction to the road, the accidents by drowsy driving should be managed differently because the drowsiness might not be controlled by human's will. To reduce the number of accidents caused by drowsy driving, researchers previously focused on the spot based analysis. However, what we actually need is a segment (link) and occurring time based analysis, rather than spot based analysis. Hence, this research performs initial effort by adapting link concept in terms of drowsy driving on highway. First of all, we analyze the accidents caused by drowsy in historical accident data along with their road environments. Then, links associate with driving time are analyzed using digital tachograph (DTG) data. To carry this out, negative binomial regression models, which are broadly used in the field, including highway safety manual, are used to define the relationship between the number of traffic accidents on expressway and drivers' behavior derived from DTG. From the results, empirical Bayes (EB) and potential for safety improvement (PSI) analysis are performed for potential risk segments of accident caused by drowsy driving on the future. As the result of traffic accidents caused by drowsy driving, the number of the traffic accidents increases with increase in annual average daily traffic (AADT), the proportion of trucks, the amount of DTG data, the average proportion of speeding over 20km/h, the average proportion of deceleration, and the average proportion of sudden lane-changing.

Development of Time-based Safety Performance Function for Freeways (세부 집계단위별 교통 특성을 반영한 고속도로 안전성능함수 개발)

  • Kang, Kawon;Park, Juneyoung;Lee, Kiyoung;Park, Joonggyu;Song, Changjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.203-213
    • /
    • 2021
  • A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.

Accident Models of Rotary by Vehicle Type (차량유형별 로터리 사고모형)

  • Han, Su-San;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • This study deals with the traffic accidents data from the Korean rotaries (circular intersections) to verify their characteristics affected by different vehicle types. This paper categorized the data into three groups based on vehicle types, and developed a set of accident models. The paper proposed two ZIP models and one negative binomial model through a statistical analysis for three vehicle types: automobile, truck and van, and others. The differences among those models were then statistically compared.

Accident Models of Circular Intersections in Korea (국내 원형교차로 사고모형)

  • Lee, Seung Ju;Park, Min Kyu;Park, Byung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.54-58
    • /
    • 2014
  • This study deals with the accidents of circular intersections in Korea. The goal is to develop the accident models for 94 circular intersections. In pursuing the above, this study gives particular attentions to collecting the data of geometric structure and accidents, and comparatively analyzing such the models as Poisson and NB regression and multiple regression model using SPSS 17.0 and LIMDEP 3.0. The main results are as follows. First, the negative binomial model among various models was analyzed to be the most appropriate. Second, 3 independent variables was adopted in the model, and these variables was analyzed to have a positive relation to the accident rate. Finally, the reduced width of circulatory roadway, removal of the parking lot within circulatory roadway and appropriate levels of approach lane were required to improve the safety of circular intersection.

A study on the impact analysis of blank sailing in the shipping industry using poisson regression analysis (포아송 회귀분석을 이용한 해운선사의 블랭크 세일링 영향 분석 연구)

  • Won-Hyeong Ryu;Bong-Keun Choi;Jong-Hoon Kim;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.120-121
    • /
    • 2023
  • Recently, there has been a continuous imbalance between the demand and supply in the shipping industry. Consequently, shipping companies are implementing blank sailing to adjust the supply of vessels and achieve a balance between demand and supply. Blank sailing can create negative ripple effects by delaying cargo transportation, so this study uses Poisson regression analysis,

  • PDF

Technology Competitiveness in the AI-Edutech Field: Using Patent Indice and Hurdle Negative Binomial Model (특허 자료를 활용한 AI-에듀테크 분야 국가 간 기술 경쟁력 분석: 특허 통계 지표와 허들 음이항 모델의 활용)

  • Ilyong Ji;Hyun-young Bae
    • Journal of Industrial Convergence
    • /
    • v.22 no.8
    • /
    • pp.1-17
    • /
    • 2024
  • Recently, interest in edutech has been focused on its fusion with AI technology, and the market in this field is expanding. This study aims to analyze the technological competitiveness and key technological areas of major countries in the AI-edutech field. Additionally, considering that AI-edutech is a convergence of AI technology and edutech, the study seeks to examine the path dependence of AI-edutech in each country to determine whether they are based on existing AI technologies or edutech. To this end, AI-edutech patents were collected and competitiveness was analyzed using patent activity, patent impact, and market acquisition indicators. Path dependence for each country was analyzed using the hurdle negative binomial regression model. The analysis results indicate that the major countries in the AI-edutech field are China, South Korea, the United States, India, and Japan. In terms of patent activity, China had the highest level, followed by South Korea. In terms of patent impact and market securing power, the United States was high in both aspects, Japan had high market securing power, and South Korea had high patent influence. The results of the hurdle negative binomial analysis presented unique findings. The logit part results indicated that the possession of existing AI and edutech did not positively affect the emergence of current AI-edutech, but the count part results showed a positive influence. This suggests that, overall, it is difficult to assert that current AI-edutechs are based on past AI and edutechs. However, once some AI-edutechs based on existing AI and edutechs emerge, they are influenced by the existing technologies. These findings provide implications for future research and technological strategies in this field.

Application of discrete Weibull regression model with multiple imputation

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Recently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete Weibull regression model using single imputation. We extend their studies by using multiple imputation also with several various settings and compare the results. The purpose of this study is to address the merit of using multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean National Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sample size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory power and is widely applicable to various types of dispersion data with a unified model.