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Abstract

In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete
Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Re-
cently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete
Weibull regression model using single imputation. We extend their studies by using multiple imputation also
with several various settings and compare the results. The purpose of this study is to address the merit of using
multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean Na-
tional Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing
the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with
those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count
data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided
the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using
multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sam-
ple size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull
model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory
power and is widely applicable to various types of dispersion data with a unified model.

Keywords: discrete count data, discrete Weibull regression model, missing data, multiple imputa-
tion, KNHANES

1. Introduction

Discrete count data arise in many fields of study including the social sciences, medical, and industrial
fields. It refers to the number of times an event occurs within a certain period. A Poisson regression
model is the ideal model for analyzing discrete count data. However, the Poisson regression model
assumes the equality of the mean and variance, which makes its use limited with real data.

With real data, the dispersion is mostly over-dispersed or under-dispersed relative to the Poisson
distribution. A negative Binomial regression is widely used to address over-dispersion, as well as
the Poisson-inverse Gaussian model (Willmot, 1987). However, these models cannot deal with data
that is highly skewed or zero-inflated data. In the case of under-dispersed distribution, a generalized
Poisson regression model (Consul and Fanmoye, 1992) and the Conway-Maxwell Poisson models
have been used (Sellers and Shmueli, 2010); more recently, Saez-Castillo and Conde-Sanchez (2013)
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proposed a hyper-Poisson regression Poisson model to address non-normal, under-dispersed distribu-
tion. However, these models, which are modifications of Poisson regression models, are complex and
computationally intensive (Chanialidis et al., 2018).

Klakattawi er al. (2018) showed how a discrete Weibull regression model can be adapted in
a simple way to address over-dispersed and under-dispersed data relative to a Poisson regression.
Discrete Weibull distribution was first introduced by Nakagawa and Osaki (1975). There are only few
papers that deal with discrete Weibull distributions. Khan et al. (1989) and Kulasekera (1994) showed
parameter estimation of the discrete Weibull distribution and Englehardt and Li (2011) used discrete
Weibull regression for correlated counts with confirmation for microbial counts in water. Moreover,
Peluso and Vinciotti (2018) introduced a generalised additive discrete Weibull regression model and
showed that it can provide a simple and unified framework to capture different levels of dispersion in
the data.

In this paper we extend the discrete Weibull regression model to a case where the count data has
missing values. Missing data is a common problem and is often encountered in many applications.
In an example of count data with missing values, Pahel ef al. (2011) performed multiple imputation
methods to analyze dental caries data using a zero-inflated Poisson (ZIP) regression model. Moreover,
Kleinke and Reinecke (2013) proposed a multiple imputation (MI) method for zero-inflated count data
based on a Bayesian regression approach. In addition, Saffari and Adnan (2010) proposed a maximum
likelihood method using the ZIP model with right-censored count data. However, there are not many
studies that use a discrete Weibull distribution to address the issue of missing data. The merit of
a discrete Weibull regression model is that it is appropriate for both over and under-dispersion count
data. Imputing the missing data under a Weibull regression method enables the use of the entire dataset
and provides significant empirical advantages to alternative methods, which require the omission of
missing values.

Recently Yoo (2019) adapted the discrete Weibull regression in the presence of missing data using
single imputation (SI). They compared the discrete Weibull regression with ZIP using SI. In the simu-
lation result, using SI yield better results compared to the complete case (CC) analysis. In this paper,
we extend the methods used in Yoo (2019) by employing MI method to impute the missing values.
We also conduct a simulation study and compare the results using MI with ST and also with the results
from a CC analysis, as well as a sensitivity analysis. We also set two different dispersion types and
investigate the performance of MI using discrete Weibull regression. In this paper for comparison, two
models (Negative Binomial, Poisson regression model) which are used frequently in discrete count
data are also added. The remainder of the paper is organized as follows. In Section 2, we introduce
the discrete Weibull regression model and briefly describe the MI method. In Section 3, we used the
data from the 2016 seventh Korean National Health and Nutrition Examination Survey (KNHANES
VII) and present the results. The results of the simulation study are summarized in Section 4. We then
conclude the study with a brief discussion in Section 5.

2. Discrete Weibull regression model with multiple imputation
2.1. Discrete Weibull regression model
In this section we introduce the discrete Weibull regression model and its properties.

Let random variable Y follow a type 1 discrete Weibull distribution; we denote Y as

Y ~ DW(q.p),
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where 0 < g < 1 and 8 > 0. The cumulative distribution function is given by

1 - (y+1)ﬁ’ :0,1,2,3,~»-’
F(y;q,ﬁ)={ 0 ! §<0.

The probability mass function is f(y; q,) = qyf - q(y”yj, fory=0,1,2,3,....

Since f(0) = 1 — g, parameter g is the probability that random variable Y has a value other than
0. Parameter S reflects the distribution skewness and controls the range of values of Y. Parameter 3 is
especially connected to the variance ratio (VR) which is the ratio between the observed variance from
the data and the theoretical variance from the model. If VR > 1, the data is said to be over-dispersed;
if VR < 1, the data is said to be under-dispersed. If VR = 1, the data is said to be of equal dispersion.
The data is over-dispersed if 0 < 8 < 1 and under-dispersed when 8 > 3, regardless of the value
qg. If 1 < B < 3, the data can be either over-dispersed or under-dispersed depending on the value of
q. In the presence of covariates, consider a discrete Weibull regression model with linked functions
of parameters g and 8. Let random variable Y follow a discrete Weibull distribution with covariates
X],Xz,. ..,Xp as

YIX ~ DW(g(X), B(X)),

where X = (1, Xy, X5, ..., X)) is a vector with p covariates. The covariates are linked through g(X) and
B(X). Peluso and Vinciotti (2018) conducted a simulation study linking parameters g and S to inspect
a discrete Weibull regression model’s level of flexibility. In this paper, we linked the covariates only
through ¢(X). The cumulative distribution function with covariates can be denoted as

1 — g(X)0+1F, =0,1,2,3,...,
F(y;q(X>,ﬁ>={ )X o

and the probability mass function is given by
F0: 90, 8) = ¢X»” = g™, fory=0,1,2,3,..., 0<qX) <1, B> 0.
Considering the covariates, the discrete Weibull regression model can be denoted as follows:
log(—log(g(X)) = X6, log(B) = ¥,

where 8 = (6,,6,,...,0,) is a vector composed of p regression coeflicients and #} is the parameter
of 8. In addition to the log(—log) link function of g(X), the logit link function can also be used. The
log-likelihood is given as

L(y, x.8,9) =TI fOilx) =TI, (q(xi)’/"f - Q(xi)(wl)ﬁ).
MLEs for the unknown parameters are obtained by maximizing the log-likelihood as follows:

10,3,0,9) = Y log () = "),
i=1

Given the estimated parameters, the conditional expectation of E(Y|X) can be obtained using a trun-
cated support (Barbiero, 2015) through numerical approximations since there is no closed form. How-
ever, the conditional T quantile can be easily derived given the covariates. The conditional 7 quantile
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of a DW distribution is the smallest integer 1) (x) for which P(Y < py(x)) = 1 - q(x)(y“)ﬁ >71. It
can be derived as follows:
(log(l - ‘z’))lIg 1
log(g(x)) '

where [-] is the ceiling function. The log of the conditional 7 quantile can be denoted as

/'[(T)('x) =

1 1
log (um(x) + 1) = B log(—log(1 — 7)) - B log(—log(g(x))).

Consider the special case where 7 = 0.5, us5)(x) is the discrete Weibull distribution’s conditional

median, denoted as follows:
log(2) \’
5(x) = (——) - 1.
Koo { log(q(x)

Using the log transformation, the log of the conditional median can be denoted as
1 1,
log (1.5)(x) + 1) = B log(log(2)) - 3" 6.

Thus, -6,/8, p = 1,..., P, is interpreted as the change in the median of the response variable given
a one unit change of x, holding all other covariates constant. Also (1/8)log(log(2)) — (1/8)8 is
interpreted as the conditional median when all covariates are set to zero. Using a log transformation
of the median is similar to the Poisson and negative Binomial models which also use the log of the
mean.

2.2. Multiple imputation

The MI method is an attractive method for addressing missing data. It was first introduced by Rubin
(1987) and involves a three-step approach in estimating a regression model with incomplete data.
The first step is to impute the missing values using an appropriate model, which incorporates random
variation. Usually, five to ten imputed datasets are created. The second step is to analyze the imputed
data using standard methods similar to those used for a complete dataset. The last step is to combine
the results for each imputed dataset and obtain pooled estimates. Compared with SI, a MI method
makes it possible for the researcher to obtain approximately unbiased estimates of the parameters,
and it can minimize standard error and increase efliciency of estimates. However, they are more
difficult to perform.

In this study, for the MI method, MI-MICE, is used; it is an imputation method using Multivariate
Imputation by Chained Equations (MICE). MICE is a software program used for imputing incom-
plete multivariate data by fully conditional specification. It appeared in the R package library in 2001.
The fully conditional method specifies the multivariate imputation model on a variable-by-variable
basis using a set of conditional densities, one for each incomplete variable (van Buuren, 2007). Using
MICE, a Gibbs sampler is constructed from specified conditionals under the assumption that a multi-
variate distribution exists from conditional distributions. This method has different names, including
regression switching (van Buuren ef al., 1999), variable-by-variable imputation (Brand, 1999), and
chained equations. We compared the MI with predictive mean matching method which is one of the
SI method and also with the CC analysis in the real data analysis and in the simulation study.
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Table 1: Covariates’ basic descriptions and missing values rates for the KHANES data

Variables Categories n (%) or mean (SD) Missing rate
Male 3665 (45)
Sex Female 4485 (55) 0.0%
Age 41.81 (22.98) 0.0%
. Town 6604 (81.0) h
Region Country 1546 (19.0) 0.0%
Low 1407 (17.3)
. . Mid-low 2047 (25.1) o
Household income Mid-high 2316 (28.4) 0.4%
High 2346 (28.8)
Under elementary 2665 (32.7)
. Middle School 820 (10.1)
Education level High School 1881 (23.1) 8.4%
University 2101 (25.8)
Management, Expert, Service etc. 2134 (26.2)
Employment type Agriculture, Assembler, etc. 1328 (16.3) 25.1%
No job 2638 (32.4)
Good 2868 (35.2)
Health status Moderate 3399(41.7) 7.8%
Bad 1274 (15.6)
Yes 2237(27.4)
Alcohol No 5443(66.8) 5%

3. Application to the seventh Korean National Health and Nutrition Examination
Survey data (KNHANES VIi, 2016)

To demonstrate the approach with real data, we used the most recent data from the seventh Korean Na-
tional Health and Nutrition Examination Survey (KNHANES VII). KNHANES is a national program
that provides statistics on the health and nutritional status of adults and children in Korea. It is based
on the National Health Promotion Act, and the surveys have been conducted by the Korea Centers for
Disease Control and Prevention (KCDC). Since 1988, the KNHANES has collected data via direct
physical examination, clinical and laboratory tests, and related measurement procedures. These data
are used widely to design health programs and services. For example, Lee ef al. (2010) compared
health behavior and health services of private medical insurance companies using the KNHANES
data. In addition, Kim ez al. (2008) utilized the KNHANES data to assess risk factors for predicting
medical service use. There are many studies that use the KNHANES data, including empirical stud-
ies with discrete count dependent variables where Poisson regression is usually used. However, the
assumptions that the Poisson regression model requires are difficult to satisfy using real data. In this
study, we analyzed the KNHANES data to investigate the covariates that affect the Imonth hospital
stay using discrete Weibull regression.

Recently Yoo (2019) analyzed the same data, however in this paper we use different dependent
variable which is the 1month hospital stay. We wanted to investigate which covariates affect the
Imonth hospital stay and we also added two more variables (health status, alcohol) which are known
as important covariates that can affect hospital stays. Several of variables in the KNHANES contains
missing values. The covariates we considered are sex, age, region, household income, education level,
employment type, health status, and alcohol. Table 1 shows the basic description of each covariate and
its missing values rate. Sex, age, and region had no missing values and household income had only a
0.4% missing rate. However, alcohol, education level and health status had relatively higher missing
rates which were 5.7%, 8.4%, and 7.8%, respectively. Employment type showed the highest missing



330 Hanna Yoo

6000 -

4000 -

2000~

0- SN S — 1 L L
0 10 20 30
1 month hospital stay

Figure 1: Distribution of 1month hospital stay in KNHANES data.

Table 2: Comparison of the maximum likelihood estimates

Variables DW_MI DW_SI Poi NB ZIP
Sex Female —-0.1601* —-0.1692* 0.5484* 0.5444* 0.1067
Age 0.0019 0.0019 0.0024 0.0028 0.0109"
Region Country —-0.0318 -0.0499 0.0124 0.1493 0.0047
Household M?d—lgw 0.2095* 0.2190" —0.4955* —0.4448 -0.0555
income M1d—h1gh 0.2648* 0.2680" —1.0357f —0.8858* -0.5641*
High 0.2057* 0.2053* —0.5665" -0.5119 -0.1331
Middle School 0.0744 0.0706 —0.4582" -0.3931 -0.2930"
Education High School 0.0475 0.0746 —0.1862 —-0.3991 —0.0466
University 0.0438 0.0188 —0.2551 -0.3691 -0.1412
Employment Agriculture, Assembler etc. -0.0091 —-0.0478 0.2732 -0.0721 0.3254
type No job —0.1246" —-0.1265* 0.6955* 0.5321* 0.5785"
Alcohol Yes —-0.0621 —-0.0812 0.3578 0.1754 0.2372*
Health Moderate -0.1674* —-0.1594* 0.6780" 0.3495* 0.2839*
status Bad —-0.6128" —-0.5874" 2.0956" 2.1038" 0.7936"
Other B=03117" g =0.3078"
AIC 6252.49 6453.21 14586.28 6311.67 7940.39

#: p-value < 0.05. AIC = Akaike information criterion.
AIC of the KNHANES data using discrete Weibull with multiple imputation (DW_MI), discrete Weibull with single
imputation (DW_SI), Poisson (Poi) and negative Binomial (NB) and zero-inflated Poisson (ZIP) regression model.

rate of 25.1%, and the 1month hospital stay had an 8.1% missing rate. The five-number summary of
the 1month hospital stay variable was (0,0, 0, 0,30); considering only the patients without missing
values, 85.6% of the patients did not stay in a hospital during the 1month period.

Figure 1 shows the distribution of the 1month hospital stay. We can see the distribution is highly
skewed to the right. Without imputing the missing values, statistical analysis is usually done with a
list-wise deletion method; thus, due to missing values in this data, only 74.3% of patients could be
included in the analysis. Thus, we imputed the missing values using MI and SI, applied the discrete
Weibull regression model, and investigated which covariate affects the 1month hospital stay.

We compared the results from applying the discrete Weibull regression with the results from the
Poisson, negative Binomial, and ZIP regression. All models were used using MI and in addition we
also compared the result of discrete Weibull regression using SI. The maximum likelihood estimates
and the Akaike information criterion (AIC) for each of the five different models are shown in Table 2.
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The parameters of the discrete Weibull regression are reported with the parameterization linked
to the log of the median; however, the other three regression models use the log of the mean of
the response variable, so the interpretation of each model’s results differs from those of the discrete
Weibull regression. Thus, we compared the significance of each covariate of the five regression models
and compared the AIC value to select the best model. The covariate’s significance varies among the
five regression models.

According to the AIC, the discrete Weibull model using MI provides the best fit, while the Poisson
regression model produced the largest AIC. Based on the discrete Weibull model with MI, the median
of the variable, Imonth hospital stay, was significantly higher among women than men. Moreover,
the results indicate that respondents of, low household income, who were unemployed, and those with
moderate/bad health tend to stay in the hospital longer than other groups. Further, 8 = 0.3117 shows
evidence of over-dispersion of the data compared to the Poisson regression.

4. Simulation studies

We conducted a simulation study to investigate the performance of discrete Weibull regression using
MI and ST under various sample sizes and missing rates. We compared the accuracy of each setting
by using the root mean squared error (RMSE) of the conditional quantile as below:

RMSE = \/Z?:l (ﬂi(T) - ,Ui(r))2 ’

n

where (7 is the true quantile and fi;(7) is the estimated quantile from the specified model.

We compared the results of the discrete Weibull model with three different models (Poisson, nega-
tive Binomial, ZIP) using MI and also compared the results using the SI (DW _SI) and CC analysis with
the discrete Weibull model (DW _CC). Discrete count data were sampled from the discrete Weibull dis-
tribution, ¥ ~ DW(g(X),8). We considered one covariate X with uniform distribution (0, 2). We set
log(—log(g(X))) = —1.8—0.5X with 8 = 2.5 for over-dispersion and set log(— log(¢(X))) = —2.8+0.8X
with 8 = 3.7 for under-dispersion. We considered sample sizes of N = 50 and 100 with missing rates
of 10% and 40%. We assumed the missing mechanism as MAR. Therefore, the missing values of
covariates only depend on observed values. Table 3 and Table 4 show the result of RMSE for three
different quantiles, T = 0.25, 0.5, 0.75, with sample size N = 50, 100, and missing rates 10%, 40% for
the over-dispersed and under-dispersed data, respectively.

Considering the case of over-dispersed data, DW_MI showed the smallest RMSE in all sample
sizes and missing rates. Comparing DW_MI and DW_SI, as the sample size decreases and missing
rate increases the DW_SI showed rather poor performance. Also when comparing the DW under
MI, SI and CC, DW_CC always showed the worst performance. This result suggests that even if the
underlying model is correct, deleting the missing values can give inefficient estimates. Moreover, the
results show that the RMSE of DW_CC is larger than that of the mis-specified models (Poisson, NB,
ZIP) in most cases and reveals the importance of imputing missing values.

Figure 2 and Figure 3 graphically summarize the results from Table 3 and Table 4, respectively.
As the figures show, the RMSE decreases as the sample size increases and the missing rate decreases.

The simulation of the under-dispersed case produced similar results to those of the over-dispersed
scenario; that is, DW with MI outperforms the other models. We can see that DW_CC performs poorly
compared to DW_MI or DW _SI and also has relatively bigger RMSE compared to other mis-specified
models (Poisson, NB, ZIP).
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Table 3: Comparison of different models in terms of RMSE on over-dispersed data simulated from DW model

with N = 50, 100 and missing rates 10%, 40%

Sample size Missing rate Quantile DW_MI DW_SI Poisson ZIP NB DW_CC
=025 0.0000 0.0000 0.6787 0.6646 1.0000 0.0000

10% 7=0.50 0.3184 0.3741 0.3847 0.3839 0.6480 0.6725

N =50 =075 0.3682 0.4242 0.4947 0.4909 0.5214 1.3093
=025 0.2190 0.7348 0.6914 0.6981 1.0000 0.0000

40% 7=0.50 0.3716 0.5291 0.4647 0.4647 0.7101 0.9623

7=0.75 0.5489 0.6480 0.5113 0.5396 0.5856 1.3744

=025 0.0000 0.0000 0.5644 0.5626 1.0000 0.0000

10% 7=0.50 0.2889 0.3316 0.3480 0.3480 0.5657 0.6686

N =100 7=0.75 0.2070 0.2449 0.3891 0.3859 0.4334 1.1324
=025 0.0000 0.0000 0.6010 0.6026 1.0000 0.1324

40% 7=0.50 0.3278 0.3464 0.3932 0.3936 0.6164 0.8686

7=0.75 0.3141 0.3464 0.4804 0.4782 0.5136 1.3572

RMSE = root mean squared error; DW_MI = discrete Weibull with multiple imputation; DW_SI = discrete Weibull with
single imputation; ZIP = zero-inflated Poisson; NB = negative Binomial; DW_CC = complete case analysis with the

discrete Weibull model.

RMSE
)

RMSE

r T
tau0.25 tau0.50

(a) N =50, missing rate = 10%

15 - — ow.m|

RMSE

tau0.75

RMSE

0.0

15 - — owm

05

(b) N =50, missing rate = 40%

tau0.50

r T
tau0.25 tau0.50

(c) N =100, missing rate = 10%

1
tau0.75

0.0

r
tau0.25

(d) N = 100, missing rate = 40%

T
tau0.50

1
tau0.75

Figure 2: RMSE of six different models given over dispersion with N = 50, 100 and missing rates 10%, 40%.

To further check the robustness of DW against mis-specified distributions, a sensitivity analysis
was conducted. We simulated data with Poisson distribution with mean (u) linked to the covariates
through log(u(X)) = —0.2 + 0.4X with X ~ Uniform(0, 1). Sample size was set to N = 50, 100 and
missing rate as 10% and 40%. The RMSE are shown in Table 5 and summarized in Figure 4 for the

discrete Weibull, Poisson, negative Binomial and ZIP models.

The results show that the RMSE of DW_MI is similar, and even lower in some simulated settings,
compared with the Poisson model. DW_ST also shows favorable results however comparing with the
MI, DW_MI shows better performance. This suggests the usefulness of the DW regression model and
that it is robust to mis-specified distributions. Given real data, it is difficult to satisfy certain conditions
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Table 4: Comparison of different models in terms of RMSE on under-dispersed data simulated from DW model

with N = 50, 100 and missing rates 10%, 40%

Sample size Missing rate Quantile DW_MI DW_SI Poisson ZIP NB DW_CC
=025 0.0000 0.0000 0.9959 0.9959 1.0000 0.0000

10% 7=0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

N =50 7=0.75 0.4193 0.4898 0.5830 0.5830 0.5830 0.9293
=025 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000

40% 7=0.50 0.0000 0.0000 0.0000 0.0000 0.1200 0.0000

7=0.75 0.5681 0.9486 0.6022 0.5995 0.6074 0.9682

=025 0.0000 0.0000 0.9387 0.9410 1.0000 0.0000

10% 7=0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

N =100 7=0.75 0.2792 0.3000 0.5477 0.5477 0.5477 0.8260
=025 0.0000 0.0000 0.9478 0.9478 1.0000 0.0000

40% 7=0.50 0.0000 0.0000 0.0000 0.0000 0.0978 0.0000

7=0.75 0.3381 0.3464 0.5656 0.5656 0.5490 0.8488

RMSE = root mean squared error; DW_MI = discrete Weibull with multiple imputation; DW_SI = discrete Weibull with
single imputation; ZIP = zero-inflated Poisson; NB = negative Binomial; DW_CC = complete case analysis with the

discrete Weibull model.
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Figure 3: RMSE of six different models given under dispersion with N = 50, 100 and missing rates 10%, 40%.

using a specific model. In such cases, a DW regression model can give desirable results.

5. Discussion

In this article we extend the discrete Weibull regression model using MI in the presence of missing
values in discrete count data. The principle merit of using a discrete Weibull regression model is
that it can capture different levels of dispersion in the data. We adopt this discrete Weibull model
to the situation where missing values occur. We used multiple and SI to impute the missing values
and compared the performance of the discrete Weibull model with the Poisson, negative-Binomial,
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Table 5: Comparison of different models in terms of RMSE simulated from Poisson model with N = 50, 100
and missing rates 10%, 40%

Sample size Missing rate Quantile DW_MI DW_SI Poisson ZIP NB

=025 0.0000 0.0000 0.0000 0.0000 0.0000

10% 7=0.50 0.3438 0.4242 0.4536 0.5547 0.8528

N =50 7=0.75 0.5599 0.5656 0.5669 0.5273 0.6179
7=0.25 0.0000 0.0000 0.0000 0.0000 0.0000

40% 7=0.50 0.3780 0.5477 0.7245 0.7245 1.0000

7=0.75 0.7348 0.7348 0.7348 0.7348 0.7428

=025 0.0000 0.0000 0.0000 0.0000 0.0000

10% 7=0.50 0.0000 0.0000 0.0000 0.0000 0.7665

N = 100 7=0.75 0.4266 0.4472 0.4184 0.4613 0.4330
=025 0.0000 0.0000 0.1378 0.1315 0.0000

40% 7=0.50 0.4889 0.5000 0.4917 0.5489 0.7983

7=0.75 0.4934 0.5196 0.4952 0.4935 0.5298

RMSE = root mean squared error; DW_MI = discrete Weibull with multiple imputation; DW_SI = discrete Weibull with
single imputation; ZIP = zero-inflated Poisson; NB = negative Binomial; DW_CC = complete case analysis with the
discrete Weibull model.
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Figure 4: RMSE of five different models under Poisson model with N = 50, 100 and missing rates 10%, 40%.

and ZIP, which are common models that are frequently used in count data. We applied the discrete
Weibull regression model to the KNHANES VII data after imputing the missing values; we also
compared the model’s adequacy with other models and showed that the DW model with MI shows
good performance.

Based on the simulation results of this study, the discrete Weibull regression model showed its
wide applicability to modeling over- and under-dispersed count data; it also proved to be robust to
mis-specified distributions. To assess the effect of imputation, we compared the results of the discrete
Weibull model both with and without using imputation. The results showed that even though the
underlying model is correct, deleting the missing values can lead to inefficient estimates. We also
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compared the results of multiple and SI. SI with discrete Weibull regression model showed rather
good performance compared to other models however when compared to MI, DW_MI always showed
better performance in all sample sizes and missing rates.

While Poisson, negative-Binomial and ZIP regression are the most widely used models for ana-
lyzing count data, the discrete Weibull regression model can be a more attractive model producing
more efficient and robust results.

In this paper we used MICE as a MI method. However, the models’ performance can be affected
by different imputation methods, missing rates, distribution of variables, and the missing-data mech-
anism. Thus, further study will be needed extending the simulation settings. Also we only considered
predictive mean matching for SI method. We can expand this to several SI methods and compare
the results with several MI methods. In addition, the KNHANES VII data used in this study con-
tains complex survey data, where participants are selected according to stratified multistage cluster
sampling. This characteristic of complex design should have been considered in our model to obtain
accurate results; however, in this article we only focused on the application of the discrete Weibull
model. Extension of this model to complex survey data is an opportunity for further study.

Acknowledgement

This work was supported by the research grant of the Busan University of Foreign Studies in 2019.

References

Barbiero A (2015). Discrete Weibull: Discrete Weibull Distributions (Type 1 and 3). Available from:
http://CRAN.R-project.org/package=DiscreteWeibull. R package version 1.0.1

Brand JJPL (1999). Development, Implementation and Evaluation of Multiple Imputation Strategies
for the Statistical Analysis of Incomplete Data Sets, Erasmus University, Rotterdam.

Chanialidis C, Evers L, Neocleous T, and Nobile A (2018). Efficient Bayesian inference for COM-
Poisson regression models, Statistics and Computing, 28, 595-608.

Consul P and F Famoye (1992). Generalized Poisson regression model, Communications in Statistics-
Theory and Methods, 21, 89-109.

Englehardt JD and R Li (2011). The discrete Weibull distribution: an application for correlated counts
with confirmation for microbial counts in water, Risk Analysis, 31, 370-381.

Khan MA, Khalique A, and Abouammoh A (1989). On estimating parameters in a discrete Weibull
distribution, IEEE Transactions on Reliability, 38, 348-350.

Kim TI, Choi YY, and Lee KH (2008). Analysis on the differences in medical service usage in terms
of income Levels, Korean Social Security Studies, 24, 53-75.

Klakattawi HS, Vinciotti V, and Yu K (2018). A simple and adaptive dispersion regression model for
count data, Entropy, 20, 142.

Kleinke K and Reinecke J (2013). Multiple imputation of incomplete zero-inflated count data, Statis-
tica Neerlandica, 67, 311-336.

Kulasekera K (1994). Approximate MLE’s of the parameters of a discrete Weibull distribution with
type 1 censored data. Microelectron, Reliab, 34, 1185-1188.

Lee YC, Im BH, and Park YH (2010). The determinants and comparison of health behavior and health
service by private medical insurance on National Health-Nutrition Survey, Journal of the Korea
Contents Association, 10, 190-204.

Nakagawa T and Osaki S (1975). The discrete Weibull distribution, IEEE Transactions on Reliability,
R-24.



336 Hanna Yoo

Pahel BT, Presisser JS, Stearns SC, and Rozier RG (2011). Multiple imputation of dental caries data
using a zero inflated Poisson regression model, Journal of Public Health Dental, 71, 71-78.
Peluso A and Vinciotti V (2018). Discrete weibull generalised additive model: an application to count
fertility data, Journal of the Royal Statistical Society. Series C (Applied Statistics), arXiv:1801.
0790.

Rubin DB (1987). Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, New York.

Saez-Castillo A and Conde-Sanchez A (2013). A hyper-Poisson regression model for overdispersed
and underdispersed count data, Computational Statistics & Data Analysis, 61, 148—157.

Saffari SE and Adnan R (2010). Zero-inflated Poisson regression models with right censored count
data, Mathematika, 27, 21-29.

Sellers KF and Shmueli G (2010). A flexible regression model for count data, Annals of Applied
Statistics, 4, 943-961.

van Buuren S (2007). Multiple imputation of discrete and continuous data by fully conditional speci-
fication, Statistical Methods in Medical Research, 16, 219-242.

van Buuren S, Boshuizen HC, and Knook DL (1999). Multiple imputation of missing blood pressure
covariates in survival analysis, Statistics in Medicine, 18, 681-694.

Willmot GE (1987). The Poisson-inverse Gaussian distribution as an alternative to the negative Bino-
mial, Scandinavian Actuarial Journal, 113-127.

Yoo H (2019). A study of discrete Weibull regression model with missing data, Journal of the Korean
Data and Information Science Society, 30, 11-22.

Received March 20, 2019; Revised April 23, 2019; Accepted April 29, 2019





