• Title/Summary/Keyword: Nearest Neighbor search

Search Result 119, Processing Time 0.03 seconds

Dynamic Nearest Neighbor Query Processing for Moving Vehicles (이동하는 차량들간 최근접 질의 처리 기법)

  • Lee, Myong-Soo;Shim, Kyu-Sun;Lee, Sang-Keun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • For three and more rapidly moving vehicles, they want to search the nearest location for meeting. Each vehicle has a different velocity and a efficient method is needed for shifting a short distance. It is observed that the existing group nearest-neighbor query has been investigated for static query points; however these studies do not extend to highly dynamic vehicle environments. In this paper, we propose a novel Dynamic Nearest-Neighbor query processing for Multiple Vehicles (DNN_MV). Our method retrieves the nearest neighbor for a group of moving query points with a given vector and takes the direction of moving query points with a given vector into consideration for DNN_MV. Our method efficiently calculates a group nearest neighbor through a centroid point that represents the group of moving query points. The experimental results show that the proposed method operates efficiently in a dynamic group nearest neighbor search.

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Jeong, Ji-Mun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.517-530
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However, Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets showed that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also showed that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Chung, Ji-Moon
    • Journal of Digital Convergence
    • /
    • v.3 no.1
    • /
    • pp.149-163
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However. Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets shows that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also shows that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

Efficient Searching Technique for Nearest Neighbor Object in High-Dimensional Data (고차원 데이터의 효율적인 최근접 객체 검색 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.269-280
    • /
    • 2004
  • The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expresses it as a B+-tree. By solving the problem of search time complexity the pyramid technique also prevents the effect of "phenomenon of dimensional curse" which is caused by treatment of hypercube range query in n-dimensional data space. The SPY-TEC applies the space division strategy in pyramid method and uses spherical range query suitable for similarity search so that Improves the search performance. However, nearest neighbor query is more efficient than range query because it is difficult to specify range in similarity search. Previously proposed index methods perform well only in the specific distribution of data. In this paper, we propose an efficient searching technique for nearest neighbor object using PdR-Tree suggested to improve the search performance for high dimensional data such as multimedia data. Test results, which uses simulation data with various distribution as well as real data, demonstrate that PdR-Tree surpasses both the Pyramid-Technique and SPY-TEC in views of search performance.rformance.

K-Nearest Neighbor Associative Memory with Reconfigurable Word-Parallel Architecture

  • An, Fengwei;Mihara, Keisuke;Yamasaki, Shogo;Chen, Lei;Mattausch, Hans Jurgen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.405-414
    • /
    • 2016
  • IC-implementations provide high performance for solving the high computational cost of pattern matching but have relative low flexibility for satisfying different applications. In this paper, we report an associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern matching. The designed architecture features reconfigurable vector-component parallelism enabled by programmable switching circuits between vector components, and a dedicated majority vote circuit. In addition, the main time-consuming part of KNN is solved by a clock mapping concept based weighted frequency dividers that drastically reduce the in principle exponential increase of the worst-case search-clock number with the bit width of vector components to only a linear increase. A test chip in 180 nm CMOS technology, which has 32 rows, 8 parallel 8-bit vector-components in each row, consumes altogether in peak 61.4 mW and only 11.9 mW for nearest squared Euclidean distance search (at 45.58 MHz and 1.8 V).

The Method to Process Nearest Neighbor Queries using Maximun Distance in Multimedia Database Systems (멀티미디어 데이터베이스 시스템에서 최대거리를 이용한 K-최대근접질의 처리 방법)

  • Seon, Hwi-Joon;Shin, Seong-Chul
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.1025-1030
    • /
    • 2004
  • In multimedia database systems, the k nearest neighbor query occurs frerluently and requires the processing cost higher than other spatial queries do. The numberof searched nodes and the computation time in an index can be minimized for optimizing the cost of processing the k nearest neighbor query. In this paper, we propose the search distance which can reduce the computation time of the optimal search distance.

  • PDF

Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

  • Li, Li;Li, Guohui;Zhou, Quan;Li, Yanhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3896-3915
    • /
    • 2014
  • The Reverse k Nearest Neighbor (RkNN) query is valuable for finding objects influenced by a specific object and is widely used in both scientific and commercial systems. However, the influence level of each object is unknown, information that is critical for some applications (e.g. target marketing). In this paper, we propose a new query type, Ordered Reverse k Nearest Neighbor (ORkNN), and make efforts to adapt it in an on-demand scenario. An Order-k Voronoi diagram based approach is used to answer ORkNN queries. In particular, for different values of k, we pre-construct only one Voronoi diagram. Algorithms on both the server and the clients are presented. We also present experimental results that suggest our proposed algorithms may have practical applications.

A Efficient Query Processing of Constrained Nearest Neighbor Search for Moving Query Point (제약을 가진 최소근접을 찾는 이동질의의 효율적인 수행)

  • Ban, Chae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11c
    • /
    • pp.1429-1432
    • /
    • 2003
  • This paper addresses the problem of finding a constrained nearest neighbor for moving query point(we call it CNNMP) The Nearest neighbor problem is classified by existence of a constrained region, the number of query result and movement of query point and target. The problem assumes that the query point is not static, as 1-nearest neighbor problem, but varies its position over time to the constrained region. The parameters as NC, NCMBR, CQR and QL for the algorithm are also presented. We suggest the query optimization algorithm in consideration of topological relationship among them

  • PDF

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.