
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, Nov. 2014 3896

Copyright © 2014 KSII

http://dx.doi.org/10.3837/tiis.2014.11.013

Ordered Reverse k Nearest Neighbor
Search via On-demand Broadcast

Li Li

1
, Guohui Li

1
, Quan Zhou

1
 and Yanhong Li

2

1 School of Computer Sci. & Tech, Huazhong University of Sci. & Tech

Wuhan, Hubei - China

[e-mail: xiangpenpende@gmail.com]

2 College of Computer Science, South-Central University for Nationalities

Wuhan, Hubei - China

[e-mail: anddylee@163.com]

*Corresponding author: Guohui Li

Received April 23, 2014; revised June 25, 2014; revised August 21, 2014; accepted September 13, 2014;

published November 30, 2014

Abstract

The Reverse k Nearest Neighbor (RkNN) query is valuable for finding objects influenced by a

specific object and is widely used in both scientific and commercial systems. However, the

influence level of each object is unknown, information that is critical for some applications

(e.g. target marketing). In this paper, we propose a new query type, Ordered Reverse k Nearest

Neighbor (ORkNN), and make efforts to adapt it in an on-demand scenario. An Order-k

Voronoi diagram based approach is used to answer ORkNN queries. In particular, for different

values of k, we pre-construct only one Voronoi diagram. Algorithms on both the server and the

clients are presented. We also present experimental results that suggest our proposed

algorithms may have practical applications.

Keywords: on-demand broadcast, ordered reverse k nearest neighbor query, ordered order-k

Voronoi diagram

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3897

1. Introduction

A reverse k nearest neighbor (RkNN) query [1-11] returns objects that take a query object as

one of its top k closest neighbors. In the past decade, the RkNN query has received increasing

research attention and has had a large impact on a broad range of applications, including

strategic planning, resource allocation, online reality games, mobile navigation systems,

decision support systems and profile-based marketing. The main drive behind many RkNN

applications is determining the degree of influence that a query object has on some other

objects. Generally, the query object bears an influence over every object in the result set of a

RkNN query. However, in almost all existing studies, the answer objects in the RkNN result

set are treated equally even though they are affected by the query object to various degrees.

With respect to a RkNN query, we identified various applications for which there is a need

to obtain an influence rank for the answer objects. A representative example is targeted selling,

which is becoming increasingly popular. Super markets that adopt the targeted selling strategy

could increase promotional effectiveness by placing targeted advertisements in the most

efficient locations. Consequently, it is of great importance to rank the influences of the

different communities sourced by the super market. In addition, in order to schedule

advertising campaigns accordingly, a gas station manager would need to identify the influence

rank of the vehicle and whether or not it is located in the gas station’s influence zone. Consider

another scenario in which players of computer games tend to attack the enemy that is nearest

to him. To avoid potential dangers, the best strategy would be to sequentially kill the enemies

that take him as the 1
st
, 2

nd
, …… closest enemy neighbors, separately.

However, ordinary RkNN queries are not appropriate for such application because the

answer objects are unordered. To tackle the problems arising from these practical applications,

we introduce a new query type, namely ordered reverse k nearest neighbors (ORkNN) query.

Compared with the original RkNN search, the ORkNN returns the same set of result objects

but with more information. For each returned object, the ORkNN returns the influence of the

query object. The ranked RNN query [1] retrieves t data objects most influenced by the query

object. While this query is similar to the ORkNN search, it is not a substitute for ORkNN

queries. For example, in the applications of targeted selling, a ranked query may return objects

that are weakly influenced by the user, while an object that is strongly affected by the user may

not be returned when t is not large enough.

Wireless technologies are widely used around the world. More and more, users prefer

wireless networks to cable and fiber, owing to the flexible, cost-saving nature of wireless

communication. Therefore, techniques toward wireless network are continuously proposed

[12-16]. Using wireless broadcast, a broadcasted data item can be shared by a number of

clients, leading to a more efficient use of shared bandwidth. There are two primary approaches

to accessing data via wireless broadcast: on-demand broadcast and push-based broadcast.

Push-based broadcasts are useful for applications that have relatively stable access patterns.

However, on-demand broadcast is more efficient at handling time-critical queries with

dynamic data access patterns, which makes on-demand broadcast quite appropriate for our

proposed ORkNN applications.

In this paper, we focus on processing the ORkNN queries in on-demand broadcast

environments for fixed query clients and moving objects of interest. To the best of our

knowledge, we present the first effort toward studying the ORkNN search. We first present a

method for computing ORkNN results by utilizing the pre-computed ordered order-K Voronoi

3898 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

diagram (OOKVD) [17], where K is the maximal possible value of k. Only one Voronoi

diagram needs to be pre-constructed, which greatly reduces the pre-construction overhead. We

then present the algorithms to the server and clients. Data items may dynamically change in

our model, preventing existing broadcast scheduling algorithms to be directly applied to

deliver ORkNN results via on-demand broadcast to the clients. Consequently, we develop a

novel scheduling method on the server to solve this problem. A priority computation technique

is used to assign priorities to pending requests before scheduling them.

Our main contributions in this paper can be summarized as follows.

1. We propose a new query type termed ordered reverse k nearest neighbors (ORkNN)

query, which has many practical applications (e.g. targeted selling). For each returned object,

ORkNN ranks the influence of the query object.

2. We propose an order-k Voronoi diagram based approach to process ORkNN queries via

on-demand broadcast. Although the ORkNN queries may be submitted with different values

of k, we only pre-constructed one Voronoi diagram, greatly reducing the total computational

burden.

3. We develop a novel broadcast scheduling method to deliver ORkNN results via

on-demand broadcast to the clients. A priority computation technique is used to assign

priorities to the pending requests and data items.

4. We conduct extensive experiments to evaluate the proposed algorithms and illustrate

their affectivity and efficiency.

We organize the remainder of the paper as follows. Related work is provided in Section 2. In

Section 3, we describe some preliminaries including our proposed ORkNN query and the

broadcast model. Section 4 presents the algorithm running on the server, and Section 5

presents the client-side algorithm. Section 6 shows the performance evaluation of our

algorithms via simulation experiments. Section 7 concludes the paper.

2. Related Work

In this section, we briefly review the previous studies related to our work in the RNN research

area and in the field of on-demand broadcast scheduling.

2.1 RNN Queries and Variants

Since the first introduction of RNN in [2], the RNN query problem has been extensively

studied [1-10] and a range of variants have been proposed. The RNN ranking query sorts the

objects of the database according to the number of other, more similar objects in the database,

without the need to restart the search from scratch [11]. In the continuous reverse nearest

neighbor (CRNN) queries [7, 9], a monitoring region of a continuous query that enables the

possibility of incremental processing is maintained. Previous studies have handled the RNN

queries for moving objects, but not in wireless broadcast environments [10, 18]. A variant of

RNN query, called ranked RNN query, is also proposed [1]. To the best of our knowledge, the

ranked RNN query is the most similar method to the proposed ORkNN query, but has several

distinct characteristics. The ranked RNN retrieves t data objects most influenced by the query

object, where t is specified at the query time to limit the size of result sets, thus the value of k is

indeterminate and the size of the result set is fixed. For an ORkNN query, the value of k is

fixed and determined when the request is issued. However, the number of returned objects is

variable. Further, the algorithm for processing ranked RNN queries in [19] is not assumed in

wireless broadcast environments.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3899

Several approaches have been proposed in previous works to processing RNN queries under

wireless periodic broadcast environments. In this field, a preliminary study is conducted [20],

where three air indexing techniques (naive air index, Rdnn-tree air index and D-tree air index)

are employed and corresponding algorithms based on these techniques are devised. A

structure called Jump Rdnn-tree is proposed to process RNN query in the broadcast

environment [21]. A Jump Rdnn-tree is constructed by adding additional link pointers to the

traditional Rdnn-tree. Using Jump Rdnn-tree, the backtracking problem is eliminated, and thus

the air index is more suitable for linear access under a wireless broadcast environment. An

RNN search protocol used in data broadcast environments is proposed [10, 18]. In this

protocol, no index structure is needed.

2.2 Data Broadcast Algorithms

Data broadcast is a large research area, and we introduce a few of the most relevant studies

here. Various scheduling algorithms have been proposed to determine the broadcast sequence

of data items in on-demand broadcast environments [22-28]. A data selection and scheduling

algorithm using a modified EDF is proposed in [27]. The scheduling algorithm termed SIN-

α [22] takes into accounts both timelines and the number of data requests. A number of data

productivity-based scheduling algorithms are extended in [29]. Additionally, their

performances for scheduling multi-item requests in multi-channel broadcast environments are

evaluated. However, these algorithms mentioned above are not approximate enough for

application in the ORkNN query processing, where the requests are time-critical and require

multiple items at the same time.

Algorithms presented in [24] and [25] (called DPA and DTIU, respectively) are well

designed to schedule multi-item requests under time constraints. Although they are effective

and efficient for scheduling static objects, direct applying of DPA and DTIU in our ORkNN

applications would lead to request response errors because data items may change in our

model. Wang et al. [30] investigated the broadcast scheduling problems associated with

disseminating timely data to periodic continuous queries and proposed an efficient online

scheduling algorithm, called RM-UO. They assume that data items accessed by a query would

not vary during their lifetime and that the requests are invoked periodically. RM-UO is a

systematic and highly efficient solution for multiple practical applications. Unfortunately,

these assumptions, especially the former, make RM-UO inadequate for processing our

proposed ORkNN queries.

3. Preliminaries

3.1 OOkVD

OOkVD, short for ordered order-k Voronoi diagram [17], is a variant of the ordinary Voronoi

diagram. An OOkVD tessellates the space into mutually exclusive and collectively exhaustive

Voronoi cells. Each cell is characterized by an ordered sequence of generator sites.

According to the definition of OOkVD [17], every OOkVD cell is characterized with an

ordering of the k nearest neighboring generators associated to it. The k nearest neighboring

generators are organized as a k-tuple. This arrangement can distinguish among the first, the

second, and up to the k
th
 nearest neighboring generator for all locations in each cell. In this

paper, we use the corresponding k-tuple to identify an OOkVD cell. When k=1, OOkVD is the

ordinary Voronoi diagram.

3900 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

Fig. 1. An example of OOkVD

An example of OOkVD is shown in Fig. 1, where k is 3, C={c1, c2, c3, c4} is the set of

generators (clients), O={o1, …, o7} is the set of interest objects moving inside the OOkVD

space and the symbols R1, …, R17 are used to represent the OO3VD cells. The k-tuples used to

identify the OOkVD cells (R1-R17) are shown in Table 1. The k-tuple (c2, c1, c4) corresponding

to R1 means the first nearest neighboring generator to any point p in R1 is c2, the second nearest

is c1, and the third is c4.

Table 1. Triples associated to the OOkVD cells

OOkVD Cell k-tuple OOkVD Cell k-tuple OOkVD Cell k-tuple

R1 (c2, c1, c4) R7 (c2, c4, c3) R13 (c4, c3, c1)

R2 (c2, c3, c4) R8 (c4, c2, c1) R14 (c4, c1, c3)

R3 (c3, c2, c4) R9 (c4, c2, c3) R15 (c4, c1, c2)

R4 (c2, c1, c3) R10 (c3, c4, c2) R16 (c1, c4, c2)

R5 (c2, c3, c1) R11 (c3, c4, c1) R17 (c1, c2, c4)

R6 (c2, c4, c1) R12 (c4, c3, c2)

3.2 Definition of ORkNN Queries

An ORkNN query returns every object of interest that considers the query object as one of their

top k closest neighbors, as well as the degree of influence.

Definition 1 (Influence degree): Let O be the set of the objects of interest. The influence

degree of an interest object oO indicates how much o is influenced by the query object. The

influence degree of o is set to be i if the query object is the i
th
 closest neighboring site of o.

The smaller the influence degree is, the more influence the query object has over the object

of interest, and vice versa. The concept of influence degree is also used in [1].

Definition 2 (ORkNN query): Let C be the set of clients, which may issue ORkNN queries.

An ORkNN query is characterized by a client cC and k. An ORkNN query returns a set of

pairs (o, i), where o is an interest object and i is the corresponding influence degree. The result

set of the ORkNN query issued by a client cC is denoted as ORkNN(c).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3901

3.3 Broadcast Model

In this section, we present the model for processing ORkNN queries via on-demand broadcast.

The on-demand broadcast environment is suitable for handling ORkNN queries for the

following two reasons: (1) A broadcasted data item can be shared by several different requests.

For example, in Fig. 1, o5 is requested by c1 and c4 at the same time; (2) The ORkNN queries

are time-critical since the interest objects may move out of the influence region.

Fig. 2. Broadcast model

As illustrated in Fig. 2, the broadcast model consists of one server, a set of clients, a set of

interest objects, and several wireless channels. The server calculates the ORkNN results and

broadcasts them to the clients. The clients are assumed to be static (e.g. parking lot, gas station

and shopping mall), and they submit ORkNN requests to the server through an uplink channel.

Each request has a deadline beyond which the receipt of required data items has no value to the

client. We assume that the clients would not issue a new request until the request being served

is satisfied, or the deadline expires. Once a client sends a request to the server, the client listens

to the download broadcast channel until the deadline expires or all needed data items have

been received. The interest objects are assumed to have arbitrary movements and their

positions and velocities are maintained in the server.

Table 2 lists the definitions of some symbols that will be frequently used later.

Table 2. Symbols and definitions

Symbol Definition

O/C The set of interest objects/clients

K The order of the pre-computed Voronoi diagram

o(ci1,,ciK) A data item

(ci1,,ciK)
A k-tuple contained in a data item used to identify an OOkVD

cell

S(q) The remaining lifetime of query q

ORkNN(c) The result set of an ORkNN query issued by client c

q An ORkNN request

RQ The queue used for recording all pending requests

3902 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

BQ(q) The queue recording all broadcasted data items required by q

UQ(q)
The queue recording all un-broadcasted data items required

by q

DR The request drop ratio

SR The scheduling efficiency ratio

Nq The number of interest objects required by q

broadcast_slot The time used for broadcasting a single data item

4. Server Algorithm

In this section, we propose an OOkVD based method to process ORkNN queries. Using

order-k Voronoi diagrams for processing RkNN queries has been considered infeasible due to

the following limitations: the value of k is not known in advance and the computation of

Voronoi diagrams for different k incurs high computational and spatial overhead costs.

However, by further exploring new properties of OOkVD, it is only necessary to pre-compute

one Voronoi diagram for the different k values, which greatly reduces the cost.

To pre-construct the Voronoi diagram, we first estimate the range of the values of k in

ORkNN queries. Then we construct the OOKVD (k=K), taking the set of clients as generators,

where K is the maximal possible value of k. Since the clients are assumed to be static, we do

not consider the updates of OOKVD in this paper.

Generally, for each new submitted ORkNN query q, we first calculate the ORkNN results

based on which data items needed by q are constructed. We then insert the obtained data items

to be broadcasted into the Data Item Set. Finally, a broadcast scheduling method is adopted to

broadcast the data items to clients. The process is shown in Fig. 3.

Fig. 3. Query processing on server

The maintenance of the Data Item Set involves many implementation details and the

methodology used to broadcast data items through wireless channels is out of the scope of this

paper. Instead, we focus on the ORkNN result calculation, data item organization and the

broadcast scheduling method.

4.1 ORkNN Result Calculation

Before presenting how to calculate ORkNN results based on the pre-computed OOKVD, we

first introduce two notions, S(ci1,,ciK) and
j
cr
S .

Definition 3 (S(ci1,,ciK)): The set of interest objects that reside in the OOkVD cell with the

K-tuple(ci1,,ciK).

For example, in Fig. 1, where we assume K=3, we have S(c1, c4, c2)={o5, o6}, and S(c2, c1,

c4)={o1}.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3903

Definition 4 (
j
cr
S): The set of interest objects, which take cr as their j

th
 reverse nearest

neighbors.

Based on Definition 3 and 4, we propose Lemma 1 as follows.

Lemma 1:  
rij

r
cc

iKi
j
c

ccSS


),,(1 .

Proof: This lemma can be proved directly according to the properties of OOKVD discussed in

Section 3.2.

 Based on Lemma 1 and the definition of ORkNN queries, we obtain ORkNN(cr) for any

crC, as shown in Lemma 2.

Lemma 2: ORkNN(cr) = {(
1

rc
S , 1), , (

k
cr
S , k)}.

Proof: This lemma can be proved directly according to the definitions of
j
cr
S and ORkNN

queries.

 According to Lemma 2, the set of interest objects required by the ORkNN query issued by

crC can be represented as 
k

j

j
cr
S
1

.

Take Fig. 1 as an example, OR1NN(c1) =)}1,{(1

1c
S , and OR2NN(c1) =)}2,(),1,{(21

11 cc SS ,

where by Lemma 1,
1

1c
S =),,(),,(241421 cccScccS  = },,{ 765 ooo , and

2

1c
S =),,(),,(),,(),,(214314312412 cccScccScccScccS  = },,,{ 4321 oooo .

Lemma 1 and Lemma 2 together make the Voronoi diagram based approach feasible, since

we do not have to construct different Voronoi diagrams for different k values. In effect, we

have created a mapping between the OOKVD cells and ORkNN(cr). The OOKVD cells, in

which the interest objects are required by crC, are called the influence cells of cr. That means,

every object of interest in the influence cells of cr is in the result set of ORkNN(cr).

Note that a query can be discarded directly after calculating the ORkNN results, without

executing the following steps. Specifically, if there is not a required object of interest by q, or

the remaining life of q is less than the time used to broadcast all un-broadcasted data items

required by q, i.e., S(q) < Nq broadcast_slot, then q is discarded immediately. Here, Nq is the

number of interest objects required by q, and broadcast_slot is the time used for broadcasting

a single data item.

4.2 Data Item Organization

In regular on-demand applications, a client is aware of the data items that are to be retrieved.

However, in our model, the clients themselves are unaware of the ORkNN query results. Thus,

the server should supply hints to guide the clients to fetch, or not fetch, a data item. To handle

this issue, we organize data items in the form of),,(1 iKi cco  , where oO is an interest

object and),,(1 iKi cc  is the K-tuple associated with the OOKVD cell where o resides.

At each moment, a data item contains a unique interest object, since one interest object can

be located in only one OOkVD cell at each moment. For presentation simplicity, we also use

the symbol o to denote a data item),,(1 iKi cco  .

The K-tuple in a data item carries two important messages: (1) which clients are requesting

the data item; (2) the influence degree of the corresponding interest object. For example, data

3904 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

item),,(1 iKi cco  is required by the clients iKi cc ,,1  , and for any client irc (1 rK),

the influence degree of o is r.

Since the clients do not know about the ORkNN results, one challenge is a client that all the

wanted data items have been received, so that it can stop listening. A straightforward method

would be to broadcast a special data item as the termination signal. This method is efficient in

stopping the client, but inefficient for bandwidth utilization. We tackle this challenge by

representing the client IDs in the K-tuples in various ways. Suppose each client ID consists of

a set of English characters. We assign an integer number to each character without any

repetition (e.g. a-z, A-Z correspond to 1-26, 27-52). If),,(1 iKi cco  is not the last

un-broadcasted data item required by an ORkNN query issued by client irc , then each

character of irc is represented by the corresponding number. Otherwise, the first character of

irc is represented by adding 52 to its corresponding number. This means that a client irc

could determine whether),,(1 iKi cco  is the last needed data item by checking the first

character of irc . If the first character of



c ir is larger than 52,),,(1 iKi cco  is the last

needed data item. For example, 2 and 54 represent the same client ID ‘b’, and 54 also informs

the client that it can stop listening after receiving the current data item.

Note that the data items can be out-of-date. Data items expire when they have been

broadcasted and then the corresponding interest object moves from one OOkVD cell to

another. A simple example is shown in Fig. 4, which is a part of Fig. 1. In Fig. 4, we assume

that at time t the interest object o, which is inside R17, is broadcasted, and at time t+1, o moves

to R1. Since when interest object o moves from R17 to R1, data item o(c1, c2, c4) becomes o(c2, c1,

c4), we say data item o(c1, c2, c4) is out-of-date at time t+1.

Fig. 4. An example of the out-of-date data item

4.3 Broadcast Scheduling Method

In this section, we propose a broadcast scheduling method based on the priorities of pengding

requests and data items. Before presenting the priority computations, we first introduce some

symbols that will be used.

o : A data item containing interest object o.

UnservedSet(q): The set of un-broadcasted data items required by q. |UnservedSet(q)|

indicates the number of data items in UnservedSet(q)..

N(o):The total number of pending requests for o . Once o is broadcasted, N(o) becomes

zero.

V(o): The velocity of interest object o.

L(o): The distance from o to the boundary of the OOkVD cell in which o resides along the

moving direction of o. An example of L(o) is shown in Fig. 5, where the arrow indicates the

moving direction of o, and the length of the dotted line segment is L(o).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3905

Fig. 5. An example of L(o)

S(q): The remaining lifetime of q, which can be obtained by subtracting current time instant

from the deadline of q.

P(o): The priority of data item o .

P(q): The priority of request q.

The priority computations should consider the following two issues: (1) the number of

objects required by an ORkNN request can be arbitrary; (2) there are time limits, not only

because each ORkNN query is submitted together with a deadline, but also because a

broadcasted object of interest may become out-of-date due to its movement.

Naturally, given two requests, the one with closer deadline should be broadcasted first;

given two requests, the one whose required data items are demanded by more other requests

should be broadcasted first; given two data items, the one with the larger request frequency

should be broadcasted first. Once an interest object moves out of the current OOkVD cell, the

results of the corresponding ORkNN requests may change.

Motivated by these observations, we define P(o) and P(q) as follows.

)(

)()(
)(

oV

oNoL
oP


 (1)

)()(

)(

)()(

qSqtUnservedSe

oP

qP qtUnservedSeo







 (2)

Notice that in both equations, a larger value indicates a higher priority.

The existence of out-of-date data items could lead a client receiving incorrect query results.

Therefore we should attempt to avoid generating out-of-date data items. If we broadcast a data

item with a small value of L(o)/V(o), the data item is more likely to expire. To some extent, the

value of L(o)/V(o) indicates the expected time o spends moving out of the current OOkVD cell.

Generally, when o arrives to a new OOkVD cell, it has a larger value of L(o)/V(o). Thus, we

give data items with smaller L(o)/V(o) low priority.

Below we show the basic idea of broadcast scheduling following a presentation of the

priority calculations.

We say a request q is finished when all data items required by q have been broadcasted; q is

terminated when S(q) < Nq broadcast_slot. The request being served is called the current

request.

At each decision point, the server selects a new data item to broadcast to clients, according

to the following two rules:

(1) If the current request is finished or terminated, we choose a new request that has the

highest priority, and the data item with the highest priority in the new current request is

selected to broadcast;

(2) Otherwise, we choose the data item with the highest priority in the current request to

broadcast.

3906 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

Notice that we compute priorities for the pending requests before scheduling them for

broadcasting to the clients, and then choose the most rewarding request to serve. To avoid the

request starvation problem, data items within the same request are considered as a whole,

meaning required data items of a request must be broadcasted consecutively before a new

query is selected. We also assign a priority value to each data item in the requests.

Consideration of data item popularity in scheduling can enhance the scheduling efficiency

since broadcasting a hot data item can serve more requests at a time.

4.4 Summary of Server Algorithm

We use a request queue RQ to record the pending requests. For each pending request q, we use

a broadcasted queue BQ(q) and an un-broadcasted queue UQ(q) to record the broadcasted and

un-broadcasted data items required by q, respectively. The request being served is called the

current request.

The entire algorithm on the server is briefly presented as follows.

(1) When a new request q arrives, we first calculate the interest objects required by q, based

on Lemma 2. If there is no interest object required by q, q is discarded. Otherwise, we check if

S(q) is smaller than Nq broadcast_slot. If the answer is positive, q is discarded; otherwise, we

insert q into the request queue.

(2) When all needed data items for request q are broadcasted or S(q) is smaller than

Nq broadcast_slot, we first remove q from RQ, and then compute the priority for each

request in RQ. Finally, we chose the reqeust that has the highest priority.

(3) For each pending request q in the request queue, which is issued by client crC, we

examine its result set periodically to see if it changes. If the answer is positive, we update the

data items required by q. There exist three situations to be considered: (1) If a new interest

object moves into the influence cells of cr, we insert the corresponding data item into the

un-broadcasted queue of q; (2) If an interest object oO moves out of the influence cells of cr,

and o has not been broadcasted, we remove o from the un-broadcasted queue of q; (3) If an

interest object oO moves out of the influence cells of cr, and o has been broadcasted, we

insert the updated o containing the updated K-tuple into the un-broadcasted queue of q.

(4) At each decision point, we choose a new data item to broadcast. Let q be the current

request, we compute the priority P(o) for each data item o in UQ(q), and choose the data

item with the highest priority to broadcast.

5. Client Algorithm

As shown in Fig. 6, algorithms on clients work as follows: (1) Submit requests to the server;

(2) Receive broadcasted data items; (3) Calculate query results based on received data items.

We focus on the third step in this paper. Note that except for the time when a new request is

submitted, there exists no interaction between the client and the server, which can save both

wireless bandwidth and the power on the client.

Fig. 6. Query processing on clients

Before presenting the client-side algorithm, we propose a lemma.

Lemma 3: Suppose the data items required by a client crC are as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3907

),,(111 iKi cco  , ,),,(11 iKi cco  (ci1 = cr);

),,(121 iKi cco  , ,),,(12 iKi cco  (ci2 = cr);



),,(11 iKiK cco  , ,),,(1 iKiK cco  (ciK = cr).

Then we have ORkNN(cr)={({o11, , 1o }, 1), ({o21, , 2o }, 2), , ({oK1, , Ko },

K)}.

Proof: This lemma can be proved according to Lemma 2 and the definition of the data item.

Below we present the algorithm executed on each client crC.

(1) cr begins to listen to the downlink channel immediately after an ORkNN query is

submitted.

(2) For each data item),,(1 iKi cco  that is received by cr, we check if the identifier of

client cr is included in the K-tuple),,(1 iKi cc  , and if another data item),,(1 jKj cco  ,

which contains the same interest object o, has already been received by cr. Depending on the

examination results, there exist four cases: (1) If cr is included in the K-tuple),,(1 iKi cc  ,

and),,(1 jKj cco  exists, we insert the newly received),,(1 iKi cco  to the temporary

result set and remove),,(1 jKj cco  from the temporary result set; (2) If cr is not included

in the K-tuple),,(1 iKi cc  and),,(1 jKj cco  exists, we remove),,(1 jKj cco  from

the temporary result set; (3) If cr is included in the K-tuple),,(1 iKi cc  and),,(1 jKj cco 

does not exist, we insert),,(1 iKi cco  into the temporary result set; (4) If cr is not included

in the K-tuple),,(1 iKi cc  and),,(1 jKj cco  does not exist, we discard),,(1 iKi cco 

directly.

(3) cr stops listening to the downlink channel when: i) The deadline expires; ii) All

necessary data items have been received, i.e., the data item),,(1 iKi cco  , which satisfies

that cr is included in),,(1 iKi cc  and the first character of the identifier of cr is represented

by a number larger than 52, is received.

(4) Considering the data items in the temporary result set as the data items required by cr, we

calculate ORkNN(cr) based on Lemma 2. Note that if no data item is received during the

lifetime of the query request, we conclude that the query result set is empty.

6. Experimental Results and Analysis

6.1 Experimental Setup

The overall simulation model is based on the system architecture shown in Fig. 2, which

consists of one base station, a number of clients and interest objects, and several wireless

channels. The available bandwidth is set to be 84Mbps. The clients are generated as uniformly

distributed points. For each interest object, we randomly chose two points as the starting point

and ending point. The object of interest moves along the line segment between the two

endpoints at a constant speed, which is also randomly generated between the maximum and

minimum speeds. After arriving the ending point, the interest object takes the ending point as

the new starting point and another point is chosen at random as the new ending point.

3908 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

Meanwhile, we generate a random number between the maximum and minimum speed as the

new speed. ORkNN query requests from different clients are independent. The lifetime of each

request is randomly chosen between the maximal and minimal values. When a request

deadline is reached, the client submits another request after a time interval, which is also a

randomly selected value with the upper and lower limits. In our simulations, we obtain

different workloads mainly by adjusting the time interval T.

The main parameters used in the simulations are summarized in Table 3. Note that, except

when explicitly stated, the experiments are conducted under the default settings. For each

group of settings, the program is run 100 times, and we take the average value as the output.

Each simulation run lasts for 10,000 broadcast slots during which the number of clients stays

unchanged and no new interest objects are added.

Table 3. Simulation parameters

Parameter Default value

Client density 0.1 per unit area

Interest object density One per unit area

Minimal/Maximal interest

object speed
20/60 unit lengths per broadcast slot

Minimal / Maximal

request lifetime
10/30 broadcast slot

Minimal / Maximal time

interval between two

consecutive requests

(abbreviated to T)

5/15 broadcast slot

k 3

The algorithms are implemented by using C++ language and all the programs are tested on

an Intel quad-core, 3.40GHz, 8GB-main-memory machine.

6.2 Experimental Results

6.2.1 Evaluation of Overhead

As mentioned in the broadcast scheduling method, at each scheduling decision point, the

server chooses a new data item to be broadcasted by recalculating priorities. In this set of

experiments, we examined the average overhead involved in making a scheduling decision, as

well as the necessary time for calculating ORkNN results.

Fig. 7 shows the average time of making a scheduling decision when the number of data

items to be broadcasted grows. Since we need to calculate data item priorities at each decision

point, the time cost changes proportionally to the number of items needed to be broadcasted

Some data items do not change and and do not need to be recalculated, so the time cost grows

slowly.

We also investigated the time cost of calculating ORkNN results. As a result, the time used

to calcute results of an ORkNN query is not strongly affected by the value of k (Fig. 8).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3909

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

data items to be broacasted

T
im

e
 (

s
)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6

k

T
im

e
 (

s
)

Fig. 7. Time cost of making a scheduling decision Fig. 8. Time cost of calculating ORkNN results

6.2.2 Evaluation of Broadcast Scheduling Method

To the best of our knowledge, we have not found any prior works that make the same

assumptions as our present study. Therefore, we examine and compare our broadcast

scheduling method (referred to as proposed) with algorithms DTIU [25], and item-level. In

each of these experiments, we use the the proposed methods to calculate ORkNN results and

construct data items. Then, one of proposed, DTIU and item-level is adopted to schedul the

data items to be broadcasted. The assumptions of DTIU are the most similar to proposed, but it

also assumes that the data items required by a request do not change during the lifetime of the

request. item-level is the same as proposed, except that a query request is not scheduled as a

whole, i.e., item-level schedules at the level of the item.

Two metrics, namely the request drop ratio (DR) and the scheduling efficiency ratio (SR),

are adopted to evaluate and analyze the performance of our proposed algorithms. Let |Q| be the

total number of submitted requests and |Qmiss| be the number of unsatisfied requests, then DR is

defined as |Qmiss|/|Q|. DR measures the ability to satisfy requests. The ideal value of DR is zero,

and means all requests are satisfied. In other words, a lower value of DR implies better

performance. Let |I| be the total number of broadcasted data items, and |Iuseful| represent the

number of broadcasted data items that lead to at least one satisfied request, then SR is defined

as |Iuseful|/|I|. SR reflects the algorithm efficiency in satisfying requests. In particular, a higher

scheduling efficiency ratio implies higher performance, meaning more requests are satisfied

by the received data items. The maximum value of the scheduling efficiency ratio is one, and

means all the broadcasted data items contribute to satisfied requests.

3910 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

0

10

20

30

40

50

60

70

80

90

100
proposed

item-level

DTIU

T

D
R

(%
)

0

10

20

30

40

50

60

70

80

90

100

item-level

proposed

DTIU

T

S
R

(%
)

(a) (b)

0

10

20

30

40

50

60

70

80

90

100
proposed

item-level

DTIU

Interest object density

D
R

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

item-level

proposed

DTIU

interest object density

S
R

(%
)

(c) (d)

0

10

20

30

40

50

60

70

80

90

100
proposed

item-level

DTIU

Interest object speed

D
R

(%
)

0

10

20

30

40

50

60

70

80

90

100

item-level

proposed

DTIU

Interest object speed

S
R

(%
)

(e) (f)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3911

0

10

20

30

40

50

60

70

80

90

100

proposed

item-level

DTIU

Client density

D
R

(%

)

0

10

20

30

40

50

60

70

80

90

100

item-level

proposed

DTIU

Client density

S
R

(%
)

(g) (h)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

proposed

item-level

DTIU

k

R
D

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

item-level

proposed

DTIU

k

S
R

 (
%

)

(i) (j)

Fig. 9. Experimental results

Effect of T. In this set of experiments, the algorithms are evaluated under different T values.

A lower value of T results in a larger request arrival rate and a heavier workload. It is

reasonable to see that, in Fig. 9 (a) and (b), all algorithms have increased performance as T

grows. As can be seen, proposed outperforms the other algorithms. DTIU performs the worst

because it does not take the changes of the data items into consideration. item-level

deteriorates faster when query workload increases than proposed. This is due to its scheduling

at the data item level leading to unsatisfied requests, even if only one data item is left

broadcasted. Scheduling a request as a whole helps to alleviate this request starvation problem.

The results are consistent with the results reported in previous study on multi-item request

scheduling [24].

Effect of Interest Object Density. Fig. 9 (c) and (d) show the effect of the interest object

density on proposed, DTIU and item-level. As can be seen, the algorithm of proposed

performs best. In general, when the value of the interest objects density becomes larger, it is

more likely that an ORkNN query request asks for more data items and that the result set of a

request changes during the lifetime. Thus, all algorithms deteriorate as the interest object

density grows. In general, a larger density of interest objects implies a larger set of request

3912 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

results and a larger probability of appearances by invalid data items. In such cases, item-level

comes across more serious problems and DTIU becomes more prone to error.

Effect of Interest Object Velocity. In Fig. 9 (e) and (f), we vary the speed of interest

objects and study the effect on proposed, DTIU and item-level. In general, the larger the

interest object’s speed, the more likely a broadcasted data item is to be out-of-date. DTIU

performance deteriorates sharply as the interest objects move faster, because the movements

of the interest objects are not involved at all when DTIU makes broadcast scheduling

decisions.

Effect of Client Density. Fig. 9 (g) and (h) show the request drop ratio and scheduling

efficiency ratio of the algorithms proposed, DTIU and item-level, when the client density

increases. All else equal, the larger the client density, then the more requests submitted to the

server within the same period of time, the less interest objects are requested by an ORkNN

query, and the more likely the interest objects are to move out of their original OOkVD cells.

Consequently, less empty-result requests appear. Thus, all algorithm performances deteriorate

with the client density. DTIU deteriorates faster because it is not designed to schedule moving

data items. As the average result size becomes small and the starvation problem is not that

serious, item-level performs relatively better.

Effect of k. In Fig. 9 (i) and (j), we varied the value of k and studied the effect of k. For any

k value, the number of objects required by an ORkNN query does not exceed k. In particular,

when k=1, the number of objects requested by an ORkNN query is either zero or one. In

general, a larger k value means a request needs more data items, which also leads to a larger

probability of the appearance of invalid data items. In such cases, proposed performs best, as

shown in Fig. 9 (i) and (j).

In brief, the proposed algorithms are demonstrated to be effective and efficient. The

overhead of calculating ORkNN results, and the time cost of making a scheduling decision,

suggest that the ORkNN result calculation and data item organization methods are efficient.

Furthermore, the comparison result of the proposed broadcast scheduling method and other

related methods suggest that the proposed broadcast scheduling method is efficient for

handling ORkNN queries via on-demand broadcast. Above all, the final results (DR and SR)

suggest that the entire processing method may have practical applications.

7. Conclusion

This paper processes ordered order k reverse nearest neighbor (ORkNN) queries in on-demand

environments. Experimental results regarding the calculation of ORkNN results and the

broadcast scheduling approach are presented. The experimental results suggest that our

proposed algorithms may have practical applications.

8. Acknowledgment

The authors would like to thank Professor LihChyun Shu and Jingpeng Wu for polishing the

writing. This work was substantially supported by National Natural Science Foundation of

China under Grants No.61173049, No. 61332001 and No. 61309002.

References

[1] K. C. K. Lee, Baihua Zheng and Wang-Chien Lee, “Ranked Reverse Nearest Neighbor Search,”

IEEE Trans. Knowl. Data Eng., vol. 20, no. 7, pp. 894. Article (CrossRef Link)

http://dx.doi.org/doi:10.1109/TKDE.2008.36

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3913

[2] Flip Korn and S. Muthukrishnan, "Influence Sets Based on Reverse Nearest Neighbor Queries," in

Proc. of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 201–212,

2000. Article (CrossRef Link)

[3] Congjun Yang and King-Ip Lin, "An index structure for efficient reverse nearest neighbor queries,"

in Proc. of the 17th International Conference on Data Engineering, pp. 485-92, 2001.

Article (CrossRef Link)

[4] King-Ip Lin, M. Nolen, and Congjun Yang, "Applying bulk insertion techniques for dynamic

reverse nearest neighbor problems," IDEAS, 2003. Article (CrossRef Link)

[5] I. Stanoi, D. Agrawal and A. El Abbadi, "Reverse Nearest Neighbor Queries for Dynamic

Databases," in Proc. of the ACM SIGMOD Workshop on Data Mining and Knowledge Discovery

(DMKD), 2000. Article (CrossRef Link)

[6] J. M. Kang, M. F. Mokbel, S. Shekhar, Tian Xia and Donghui Zhang, "Continuous evaluation of

monochromatic and bichromatic reverse nearest neighbors," ICDE, 2007. Article (CrossRef Link)

[7] Guohui Li, Yanhong Li, Jianjun Li, LihChyun Shu, Fumin Yang, "Continuous reverse k nearest

neighbor monitoring on moving objects in road networks," Information Systems, 2010.

 Article (CrossRef Link)

[8] Wei Wu, Fei Yang, Chee Yong Chan and K. -L. Tan, "Continuous Reverse k-Nearest-Neighbor

Monitoring," Mobile Data Management, 2008. Article (CrossRef Link)

[9] Tian Xia, Donghui Zhang, "Continuous reverse nearest neighbor monitoring," ICDE, 2006.

Article (CrossRef Link)

[10] Rimantas Benetis, Christian S. Jensen, Gytis Karčiauskas and Simonas Šaltenis, "Nearest and

reverse nearest neighbor queries for moving objects," VLDB Journal, vol. 15, no. 3, pp. 229-250,

2006. Article (CrossRef Link)

[11] H. -P. Kriegel, P. Kroger, M. Renz, A. Zufle and A. Katzdobler, "Incremental reverse nearest

neighbor ranking," in ICDE, 2009. Article (CrossRef Link)

[12] Doohee Song and Kwangjin Park, "An Efficient Adaptive Bitmap-based Selective Tuning Scheme

for Spatial Queries in Broadcast Environments," KSII Transactions on Internet & Information

Systems, 2011. Article (CrossRef Link)

[13] P. Pahlavani, V. Derhami and A. M. Z. Bidoki, "FENC: Fast and Efficient Opportunistic Network

Coding in wireless networks," KSII Transactions on Internet & Information Systems, 2011.

Article (CrossRef Link)

[14] S. A. Alomari and P. Sumari, "Effective Broadcasting and Caching Technique for Video on

Demand over Wireless Network," KSII Transactions on Internet & Information Systems, 2012.

Article (CrossRef Link)

[15] J. Chen, Y. Xu, L. Ma and Y. Wang, "Multi-agent Q-learning based Admission Control

Mechanism in Heterogeneous Wireless Networks for Multiple Services," KSII Transactions on

Internet and Information Systems (TIIS), 2013.

[16] C. X. Liu, Y. Zhang, E. Xu, Y. Q. Yang and X. H. Zhao, "A Novel Multi-Path Routing Algorithm

Based on Clustering for Wireless Mesh Networks," KSII Transactions on Internet & Information

Systems, 2014.

[17] A. Okabe, B. Boots, K. Sugihara and S. N. Chiu, "Spatial tessellations: concepts and applications

of Voronoi diagrams," John Wiley & Sons, vol. 501, 2009.

[18] R. Benetis, Christian S. Jensen, G. Karciauskas and S. Saltenis, "Nearest Neighbor and Reverse

Nearest Neighbor Queries for Moving Objects," in Proc. of IDEAS, pp. 44-53, 2002.

Article (CrossRef Link)

[19] M. A. Cheema, Xuemin Lin, Wenjie Zhang and Ying Zhang, "Influence zone: Efficiently

processing reverse k nearest neighbors queries," in Proc. of ICDE, pp. 577-588, 2011.

Article (CrossRef Link)

[20] InHo Jang and SangKeun Lee, "Search Reverse Nearest Neighbor Query On Air," in Proc. of

International Conference on Information Technology, pp. 291-296. Ariticle (CrossRef Link)

[21] Lien-Fa Lin, "Search RNN on Broadcast Environment," Proc. of Third International Conference

on Intelligent Information Hiding and Multimedia Signal," vol. 2, pp. 361-364, 2007.

Article (CrossRef Link)

http://dx.doi.org/doi:10.1145/342009.335415
http://dx.doi.org/doi:10.1109/ICDE.2001.914862
http://dx.doi.org/doi:10.1109/IDEAS.2003.1214938
http://delab.csd.auth.gr/~alex/sdb/stanoi.pdf
http://dx.doi.org/doi:10.1109/ICDE.2007.367926
http://dx.doi.org/DOI:10.1016/j.is.2010.05.002
http://dx.doi.org/doi:10.1109/MDM.2008.31
http://dx.doi.org/doi:10.1109/ICDE.2006.43
http://dx.doi.org/10.1007/s00778-005-0166-4
http://dx.doi.org/doi:10.1109/ICDE.2009.144
http://dx.doi.org/10.3837/tiis.2011.10.011
http://dx.doi.org/10.3837/tiis.2011.01.003
http://dx.doi.org/10.3837/tiis.2012.03.009
http://dx.doi.org/doi:10.1109/IDEAS.2002.1029655
http://dx.doi.org/doi:10.1109/ICDE.2011.5767904
http://doi.ieeecomputersociety.org/10.1109/ITNG.2007.173
http://dx.doi.org/doi:10.1109/IIH-MSP.2007.273

3914 Li Li et al.: Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

[22] Jianliang Xu, Xueyan Tang and Wang-Chien Lee, "Time-critical on-demand data broadcast:

Algorithms, analysis, and performance evaluation," IEEE Transactions on Parallel and Distributed

Systems, vol. 17, no. 1, 2006. Article (CrossRef Link)

[23] D. Aksoy and M. Franklin, "R×W: a scheduling approach for large-scale on-demand data

broadcast," IEEE/ACM Transactions on Networking (ToN), vol. 7, no. 6, pp. 846-860, 1999.

Article (CrossRef Link)

[24] Jun Chen, Victor C. S. Lee and Kai Liu, "On the performance of real-time multi-item request

scheduling in data broadcast environments," Journal of Systems and Software, vol. 83, no.8, pp.

1337-45, 2010. Article (CrossRef Link)

[25] Jun Chen, Victor C. S. Lee and Edward Chan, "Scheduling real-time multi-item requests in

wireless on-demand broadcast networks," in Proc. of the 4th ACM international conference on

mobile technology, applications, and systems and the 1st international symposium on Computer

human interaction in mobile technology, pp. 125-131, 2007. Article (CrossRef Link)

[26] H. D. Dykeman and J. W. Wong, "A performance study of broadcast information delivery

systems," in Proc. of IEEE INFOCOM, 1988. Article (CrossRef Link)

[27] Ping Xuan, S. Sen, O. Gonzalez, J. Fernandez and K. Ramamritham, "Broadcast on demand:

Efficient and timely dissemination of data in mobile environments," in Proc. of 3
rd

 IEEE Real-Time

Technology Application Symposium, 1997. Article (CrossRef Link)

[28] Chuan-Ming Liu and Kun-Feng Lin, "Efficient scheduling algorithms for disseminating dependent

data in wireless mobile environments," in Proc. of IEEE Conf. on Wireless Networks,

Communications and Mobile Computing, pp. 375-380, 2005. Article (CrossRef Link)

[29] Kai Liu and Victor C. S. Lee, "Performance analysis of data scheduling algorithms for multi-item

requests in multi-channel broadcast environments," International journal of communication systems,

vol. 23, nol. 4, pp. 529-542. Article (CrossRef Link)

[30] Hongya Wang, Yingyuan Xiao and LihChyun Shu, "Scheduling Periodic Continuous Queries in

Real-Time Data Broadcast Environments," IEEE Transactions on Computers, vol. 61, no.9, pp.

1325-40, 2012. Article (CrossRef Link)

http://dx.doi.org/doi:10.1109/TPDS.2006.14
http://dx.doi.org/doi:10.1109/90.811450
http://dx.doi.org/10.1016/j.jss.2010.01.034
http://dx.doi.org/doi:10.1145/1378063.1378085
http://dx.doi.org/doi:10.1109/INFCOM.1988.12986
http://dx.doi.org/10.1109/RTTAS.1997.601342
http://dx.doi.org/doi:10.1109/WIRLES.2005.1549438
http://dx.doi.org/DOI:10.1002/dac.1098
http://dx.doi.org/10.1109/TC.2011.154

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014 3915

Li Li is a Phd candidate in School of Computer Science and Technology, Huazhong

University of Science and Technology. She received her B.E. degree in Information Security

from Chongqing University of Posts and Telecommunications, China, in 2009. Her reaearch

interests mainly include spatial data management and data mining methodologies.

Guohui Li received his B.E. degree from Nanjing University of Aeronautics and

Astronautics in 1994 and Ph.D. degree from Huazhong University of Science and

Technology in 1999, where he is now a full professor. His research interests include

location-based data management, big data processing and real-time computing.

Quan Zhou received the B.E. degree in software engineering from Heilongjiang University,

Harbin, Heilongjiang, P.R. China, in 2009. He is currently a PhD candidate in Huazhong

University of Science and Technology, Wuhan, Hubei, P.R. China. His research interests

include real-time computing, mobile computing and database systems.

Yanhong Li received the B.E. degree in Mechanical Engineering from Central South

University (CSU), China, in 1993, the M.S. degree in Computer Application from Chongqing

University (CQU), China, 2004, and the Ph.D degree in Computer Softwareand Theory from

Huazhong University of Science and Technology (HUST) in 2011. Since 2012, she has been

on the faculty in computer school at South-Central University for Nationalities, and she is

currently a associate professor in the Department of Computer Application. Her research

interests include Spatial Information and Communication, and multimedia network

communication technology.

