• Title/Summary/Keyword: Nearest Neighbor Estimates

Search Result 10, Processing Time 0.029 seconds

Comparison of Forest Growing Stock Estimates by Distance-Weighting and Stratification in k-Nearest Neighbor Technique (거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교)

  • Yim, Jong Su;Yoo, Byung Oh;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.374-380
    • /
    • 2012
  • The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0 to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ${\pm}0.6m^3/ha$ in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA- 100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated ($5m^3/ha$) compared to statistical yearbook of forestry at 2011.

Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing - A Comparison between k-Nearest Neighbor and Regression Tree Analysis - (위성영상을 활용한 지상부 산림바이오매스 탄소량 추정 - k-Nearest Neighbor 및 Regression Tree Analysis 방법의 비교 분석 -)

  • Jung, Jaehoon;Nguyen, Hieu Cong;Heo, Joon;Kim, Kyoungmin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.651-664
    • /
    • 2014
  • Recently, the demands of accurate forest carbon stock estimation and mapping are increasing in Korea. This study investigates the feasibility of two methods, k-Nearest Neighbor (kNN) and Regression Tree Analysis (RTA), for carbon stock estimation of pilot areas, Gongju and Sejong cities. The 3rd and 5th ~ 6th NFI data were collected together with Landsat TM acquired in 1992, 2010 and Aster in 2009. Additionally, various vegetation indices and tasseled cap transformation were created for better estimation. Comparison between two methods was conducted by evaluating carbon statistics and visualizing carbon distributions on the map. The comparisons indicated clear strengths and weaknesses of two methods: kNN method has produced more consistent estimates regardless of types of satellite images, but its carbon maps were somewhat smooth to represent the dense carbon areas, particularly for Aster 2009 case. Meanwhile, RTA method has produced better performance on mean bias results and representation of dense carbon areas, but they were more subject to types of satellite images, representing high variability in spatial patterns of carbon maps. Finally, in order to identify the increases in carbon stock of study area, we created the difference maps by subtracting the 1992 carbon map from the 2009 and 2010 carbon maps. Consequently, it was found that the total carbon stock in Gongju and Sejong cities was drastically increased during that period.

Metalevel Data Mining through Multiple Classifier Fusion (다수 분류기를 이용한 메타레벨 데이터마이닝)

  • 김형관;신성우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.551-553
    • /
    • 1999
  • This paper explores the utility of a new classifier fusion approach to discrimination. Multiple classifier fusion, a popular approach in the field of pattern recognition, uses estimates of each individual classifier's local accuracy on training data sets. In this paper we investigate the effectiveness of fusion methods compared to individual algorithms, including the artificial neural network and k-nearest neighbor techniques. Moreover, we propose an efficient meta-classifier architecture based on an approximation of the posterior Bayes probabilities for learning the oracle.

  • PDF

Nonparametric Estimation of the Bivariate Survival Function under Koziol-Green Model I

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.975-982
    • /
    • 2003
  • In this paper we considered the problem of estimating the bivariate survival distribution of the random vector (X, Y) when Y may be subject to random censoring but X is always uncensored. Adapting conditional Koziol-Green model, simplified estimator for bivariate survival function is proposed. We perform simulation to compare the proposed estimator with popular estimators and discussed the performance of it.

  • PDF

Estimation of Forest Biomass based upon Satellite Data and National Forest Inventory Data (위성영상자료 및 국가 산림자원조사 자료를 이용한 산림 바이오매스 추정)

  • Yim, Jong-Su;Han, Won-Sung;Hwang, Joo-Ho;Chung, Sang-Young;Cho, Hyun-Kook;Shin, Man-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.311-320
    • /
    • 2009
  • This study was carried out to estimate forest biomass and to produce forest biomass thematic map for Muju county by combining field data from the 5$^{th}$ National Forest Inventory (2006-2007) and satellite data. For estimating forest biomass, two methods were examined using a Landsat TM-5(taken on April 28th, 2005) and field data: multi-variant regression modeling and t-Nearest Neighbor (k-NN) technique. Estimates of forest biomass by the two methods were compared by a cross-validation technique. The results showed that the two methods provide comparatively accurate estimation with similar RMSE (63.75$\sim$67.26ton/ha) and mean bias ($\pm$1ton/ha). However, it is concluded that the k-NN method for estimating forest biomass is superior in terms of estimation efficiency to the regression model. The total forest biomass of the study site is estimated 8.4 million ton, or 149 ton/ha by the k-NN technique.

A New Similarity Measure based on Separation of Common Ratings for Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.149-156
    • /
    • 2021
  • Among various implementation techniques of recommender systems, collaborative filtering selects nearest neighbors with high similarity based on past rating history, recommends products preferred by them, and has been successfully utilized by many commercial sites. Accurate estimation of similarity is an important factor that determines performance of the system. Various similarity measures have been developed, which are mostly based on integrating traditional similarity measures and several indices already developed. This study suggests a similarity measure of a novel approach. It separates the common rating area between two users by the magnitude of ratings, estimates similarity for each subarea, and integrates them with weights. This enables identifying similar subareas and reflecting it onto a final similarity value. Performance evaluation using two open datasets is conducted, resulting in that the proposed outperforms the previous one in terms of prediction accuracy, rank accuracy, and mean average precision especially with the dense dataset. The proposed similarity measure is expected to be utilized in various commercial systems for recommending products more suited to user preference.

Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods (비모수적 기법에 의한 확률론적 저수지 유입량 예측)

  • Lee, Han-Goo;Kim, Sun-Gi;Cho, Yong-Hyon;Chong, Koo-Yol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

Schematic Cost Estimation Method using Case-Based Reasoning: Focusing on Determining Attribute Weight (사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로)

  • Park, Moon-Seo;Seong, Ki-Hoon;Lee, Hyun-Soo;Ji, Sae-Hyun;Kim, Soo-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2010
  • Because the estimated cost at early stage has great influence on decisions of project owner, the importance of early cost estimation is increasing. However, it depends on experience and knowledge of the estimator mainly due to shortage of information. Those tendency developed into case-based reasoning(CBR) method which solves new problems by adapting previous solution to similar past problems. The performance of CBR model is affected by attribute weight, so that its accurate determination is necessary. Previous research utilizes mathematical method or subjective judgement of estimator. In order to improve the problem of previous research, this suggests CBR schematic cost estimation method using genetic algorithm to determine attribute weight. The cost model employs nearest neighbor retrieval for selecting past case. And it estimates the cost of new cases based on cost information of extracted cases. As the result of validation for 17 testing cases, 3.57% of error rate is calculated. This rate is superior to accuracy rate proposed by AACE and the method to determine attribute weight using multiple regression analysis and feature counting. The CBR cost estimation method improve the accuracy by introducing genetic algorithm for attribute weight. Moreover, this makes user understand the problem-solving process easier than other artificial intelligence method, and find solution within short time through case retrieval algorithm.

Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery (임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Jung, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.449-459
    • /
    • 2015
  • The conventional National Forest Inventory(NFI)-based forest carbon stock estimation method is suitable for national-scale estimation, but is not for regional-scale estimation due to the lack of NFI plots. In this study, for the purpose of regional-scale carbon stock estimation, we created grid-based forest carbon stock maps using spatial ancillary data and two types of up-scaling methods. Chungnam province was chosen to represent the study area and for which the $5^{th}$ NFI (2006~2009) data was collected. The first method (method 1) selects forest type map as ancillary data and uses regression model for forest carbon stock estimation, whereas the second method (method 2) uses satellite imagery and k-Nearest Neighbor(k-NN) algorithm. Additionally, in order to consider uncertainty effects, the final AGB carbon stock maps were generated by performing 200 iterative processes with Monte Carlo simulation. As a result, compared to the NFI-based estimation(21,136,911 tonC), the total carbon stock was over-estimated by method 1(22,948,151 tonC), but was under-estimated by method 2(19,750,315 tonC). In the paired T-test with 186 independent data, the average carbon stock estimation by the NFI-based method was statistically different from method2(p<0.01), but was not different from method1(p>0.01). In particular, by means of Monte Carlo simulation, it was found that the smoothing effect of k-NN algorithm and mis-registration error between NFI plots and satellite image can lead to large uncertainty in carbon stock estimation. Although method 1 was found suitable for carbon stock estimation of forest stands that feature heterogeneous trees in Korea, satellite-based method is still in demand to provide periodic estimates of un-investigated, large forest area. In these respects, future work will focus on spatial and temporal extent of study area and robust carbon stock estimation with various satellite images and estimation methods.