Abstract
This study was carried out to estimate forest biomass and to produce forest biomass thematic map for Muju county by combining field data from the 5$^{th}$ National Forest Inventory (2006-2007) and satellite data. For estimating forest biomass, two methods were examined using a Landsat TM-5(taken on April 28th, 2005) and field data: multi-variant regression modeling and t-Nearest Neighbor (k-NN) technique. Estimates of forest biomass by the two methods were compared by a cross-validation technique. The results showed that the two methods provide comparatively accurate estimation with similar RMSE (63.75$\sim$67.26ton/ha) and mean bias ($\pm$1ton/ha). However, it is concluded that the k-NN method for estimating forest biomass is superior in terms of estimation efficiency to the regression model. The total forest biomass of the study site is estimated 8.4 million ton, or 149 ton/ha by the k-NN technique.
본 연구는 전라북도 무주군을 대상으로 제5차 국가산림자원조사 자료와 위성영상(Landsat TM-5)자료를 이용하여 산림 바이오매스를 추정하고 이를 토대로 바이오매스 주제도를 작성하고자 하였다. 먼저 국가산림자원조사의 야외 표본점 자료를 이용하여 조사표본점의 단위면적 당 축적을 산출하고, 바이오매스 변환계수를 적용하여 산림 바이오매스를 추정하였다. 본 연구에서는 위성영상 자료를 이용한 산림 바이오매스 추정을 위해 회귀모형을 이용하는 방법과 최근린 기법(k-Nearest Neighbor)을 이용하는 두 가지 방법을 사용하였는데, 이 두 가지 방법에 의해 추정된 산림 바이오매스를 국가산림자원조사 자료에 의한 추정치와 비교하여 최적의 방법을 선정하였다. 추정된 바이오매스 통계량의 비교를 위해 교차대조법을 이용하여 RMSE(Root Mean Square Error)와 평균편의(Mean Bias)를 산출하였는데, 그 결과 두 방법 모두 유사한 추정오차(RMSE: 63.75$\sim$67.26ton/ha)와 편차($\pm$1 ton/ha)를 보여 정확성 면에서는 큰 차이가 없는 것으로 나타났다. 하지만 최근린 기법을 이용하여 산림 바이오매스를 추정하는 것이 효율성 측면에서 보다 유리할 것으로 평가되었다. 최근린 기법에 의해 추정된 무주군의 산림 바이오매스는 약 839만 톤으로 나타났으며 단위면적당 평균은 149톤/ha인 것으로 분석되었다.