• Title/Summary/Keyword: Nearest Neighbor Analysis

Search Result 257, Processing Time 0.021 seconds

Investigation of Trend in Virtual Reality-based Workplace Convergence Research: Using Pathfinder Network and Parallel Neighbor Clustering Methodology (가상현실 기반 업무공간 융복합 분야 연구 동향 분석 : 패스파인더 네트워크와 병렬 최근접 이웃 클러스터링 방법론 활용)

  • Ha, Jae Been;Kang, Ju Young
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.19-43
    • /
    • 2022
  • Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

A Study on Fault Detection and Diagnosis of Gear Damages - A Comparison between Wavelet Transform Analysis and Kullback Discrimination Information - (기어의 이상검지 및 진단에 관한 연구 -Wavelet Transform해석과 KDI의 비교-)

  • Kim, Tae-Gu;Kim, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • This paper presents the approach involving fault detection and diagnosis of gears using pattern recognition and Wavelet transform. It describes result of the comparison between KDI (Kullback Discrimination Information) with the nearest neighbor classification rule as one of pattern recognition methods and Wavelet transform to know a way to detect and diagnosis of gear damages experimentally. To model the damages 1) Normal (no defect), 2) one tooth is worn out, 3) All teeth faces are worn out 4) One tooth is broken. The vibration sensor was attached on the bearing housing. This produced the total time history data that is 20 pieces of each condition. We chose the standard data and measure distance between standard and tested data. In Wavelet transform analysis method, the time series data of magnitude in specified frequency (rotary and mesh frequency) were earned. As a result, the monitoring system using Wavelet transform method and KDI with nearest neighbor classification rule successfully detected and classified the damages from the experimental data.

  • PDF

Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing - A Comparison between k-Nearest Neighbor and Regression Tree Analysis - (위성영상을 활용한 지상부 산림바이오매스 탄소량 추정 - k-Nearest Neighbor 및 Regression Tree Analysis 방법의 비교 분석 -)

  • Jung, Jaehoon;Nguyen, Hieu Cong;Heo, Joon;Kim, Kyoungmin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.651-664
    • /
    • 2014
  • Recently, the demands of accurate forest carbon stock estimation and mapping are increasing in Korea. This study investigates the feasibility of two methods, k-Nearest Neighbor (kNN) and Regression Tree Analysis (RTA), for carbon stock estimation of pilot areas, Gongju and Sejong cities. The 3rd and 5th ~ 6th NFI data were collected together with Landsat TM acquired in 1992, 2010 and Aster in 2009. Additionally, various vegetation indices and tasseled cap transformation were created for better estimation. Comparison between two methods was conducted by evaluating carbon statistics and visualizing carbon distributions on the map. The comparisons indicated clear strengths and weaknesses of two methods: kNN method has produced more consistent estimates regardless of types of satellite images, but its carbon maps were somewhat smooth to represent the dense carbon areas, particularly for Aster 2009 case. Meanwhile, RTA method has produced better performance on mean bias results and representation of dense carbon areas, but they were more subject to types of satellite images, representing high variability in spatial patterns of carbon maps. Finally, in order to identify the increases in carbon stock of study area, we created the difference maps by subtracting the 1992 carbon map from the 2009 and 2010 carbon maps. Consequently, it was found that the total carbon stock in Gongju and Sejong cities was drastically increased during that period.

Analysis of Urban Distribution Pattern with Satellite Imagery

  • Roh, Young-Hee;Jeong, Jae-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.616-619
    • /
    • 2007
  • Nowadays, urbanized area expands its boundary, and distribution of urbanized area is gradually transformed into more complicated pattern. In Korea, SMA(Seoul Metropolitan Area) has outstanding urbanized area since 1950s. But it is ambiguous whether urban distribution is clustered or dispersed. This study aims to show the way in which expansion of urbanized area impacts on spatial distribution pattern of urbanized area. We use quadrat analysis, nearest-neighbor analysis and fractal analysis to know distribution pattern of urbanized area in time-series urban growth. The quadrat analysis indicates that distribution pattern of urbanized area is clustered but the cohesion is gradually weakened. And the nearest-neighbor analysis shows that point patterns are changed that urbanized area distribution pattern is progressively changed from clustered pattern into dispersed pattern. The fractal dimension analysis shows that 1972's distribution dimension is 1.428 and 2000's dimension is 1.777. Therefore, as time goes by, the complexity of urbanized area is more increased through the years. As a result, we can show that the cohesion of the urbanized area is weakened and complicated.

  • PDF

Locality-Sensitive Hashing for Data with Categorical and Numerical Attributes Using Dual Hashing

  • Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Locality-sensitive hashing techniques have been developed to efficiently handle nearest neighbor searches and similar pair identification problems for large volumes of high-dimensional data. This study proposes a locality-sensitive hashing method that can be applied to nearest neighbor search problems for data sets containing both numerical and categorical attributes. The proposed method makes use of dual hashing functions, where one function is dedicated to numerical attributes and the other to categorical attributes. The method consists of creating indexing structures for each of the dual hashing functions, gathering and combining the candidates sets, and thoroughly examining them to determine the nearest ones. The proposed method is examined for a few synthetic data sets, and results show that it improves performance in cases of large amounts of data with both numerical and categorical attributes.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

An Improved Text Classification Method for Sentiment Classification

  • Wang, Guangxing;Shin, Seong Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • In recent years, sentiment analysis research has become popular. The research results of sentiment analysis have achieved remarkable results in practical applications, such as in Amazon's book recommendation system and the North American movie box office evaluation system. Analyzing big data based on user preferences and evaluations and recommending hot-selling books and hot-rated movies to users in a targeted manner greatly improve book sales and attendance rate in movies [1, 2]. However, traditional machine learning-based sentiment analysis methods such as the Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) had performed poorly in accuracy. In this paper, an improved kNN classification method is proposed. Through the improved method and normalizing of data, the purpose of improving accuracy is achieved. Subsequently, the three classification algorithms and the improved algorithm were compared based on experimental data. Experiments show that the improved method performs best in the kNN classification method, with an accuracy rate of 11.5% and a precision rate of 20.3%.

A study on Spatial Distribution Pattern of Urbanized Area using GIS Analysis: Focused on Urban Growth of Seoul Metropolitan Area (GIS분석기법을 이용한 도시화 지역의 공간적 분포패턴에 관한 연구: 수도권의 도시성장을 중심으로)

  • Jeong, Jae-Joon;Roh, Young-Hee
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.319-331
    • /
    • 2007
  • Nowadays, urbanized area expands its boundary, and distribution of urbanized area is gradually transformed into more complicated pattern. In Korea, SMA(Seoul Metropolitan Area) has outstanding urbanized area since 1960. But it is ambiguous whether urban distribution is clustered or dispersed. That is to say, it is difficult to understand spatial distribution pattern of urbanized area, although urbanized area has grown gradually. This study aims to show the way in which expansions of urbanized area impact on spatial distribution pattern of urbanized area. We use GIS analysis based on raster dataset, quadrat analysis, and nearest neighbor analysis to know distribution pattern of urbanized area in time-series urban growth. Experiments show that cohesion of SMA's urbanized area had increased to the early 1980s, but has decreased from the middle 1980s. Also, urban growth of SMA has been characterized not by spillover growth but by leapfrogging growth and road-influenced growth since the middle 1980s.

  • PDF