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Abstract 
 

In this study, we propose a distance metric learning approach called discriminant metric 

learning (DML) for face verification, which addresses a binary-class problem for classifying 

whether or not two input images are of the same subject. The critical issue for solving this 

problem is determining the method to be used for measuring the distance between two images. 

Among various methods, the large margin nearest neighbor (LMNN) method is a 

state-of-the-art algorithm. However, to compensate the LMNN’s entangled data distribution 

due to high levels of appearance variations in unconstrained environments, DML’s goal is to 

penalize violations of the negative pair distance relationship, i.e., the images with different 

labels, while being integrated with LMNN to model the distance relation between positive 

pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using 

DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, 

rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a 

verification mechanism that measures the correlation of the class label distribution of 

neighbors to reduce the false negative rate of positive pairs. From the experimental results, we 

see that DML can modify the relation of negative pairs in the original LMNN space and 

compensate for LMNN’s performance on faces with large variances, such as pose and 

expression. 
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1. Introduction 

Face recognition is an active research issue in the field of computer vision and has been 

studied for more than two decades [1]-[10]. It has a wide range of practical applications, 

including surveillance and border-control systems. For a traditional access system, users can 

enter a site using keys or integrated circuit (IC) cards; however, security is doubtful because 

these keys can be easily pirated. Recently, bioinformatics has become popular for access 

systems, and popular approaches include recognizing fingerprints and palm prints. However, 

these methods are inconvenient due to the required contact process. In contrast, the 

non-contact process of using the human face to convey a subject’s identity as an access key is 

more attractive. 

Not exclusive to the private security field, face recognition/verification also plays an 

important role in public security. We are surrounded by surveillance systems and every 

crossroad is equipped with cameras to record every moment. Consider the occurrence of an 

urgent event; for example, the police pursuing a criminal and attempting to determine his 

movements. Checking every frame in all camera records is manually impossible. A more 

efficient technique would be a face verification system that could filter results and present 

frames of possible suspects for further analysis. However, the development of robust face 

verification is challenging since facial images contain an immense variety of expressions, 

orientations, lighting conditions, occlusions, and so forth. In recent years, researchers have 

focused on raising the accuracy rate with respect to these variations, including the design of 

good features for face representation[4], [6], [9], [11], [12] and distance metric learning [10], 

[11], [13]. 

Due to its wide use in security applications, we focus our efforts in this study on the problem 

of face verification to determine whether a pair of facial images is the same or a different 

person. The fundamental problem is how to measure the similarity between facial examples. A 

surge of recent research [13-20] has focused on Mahalanobis metric learning to improve the 

performance of k-nearest neighbor (k-NN) classifications. In an uncontrolled environment, it 

is assumed that facial images can only be detected by a face detector [21], and thus a high 

degree of variances result, due to lighting conditions, poses, occlusions, and background 

clutter that make verification challenging. To tackle the highly entangled data distributions 

caused by the above factors, we propose a distance metric algorithm that can heavily penalize 

violations in the distance relationship for between-class data while preserve those remaining 

within-class. In addition, we propose a validation approach that measures the correlation 

between the label distributions of neighbors to improve the true positive rate. 

2. Related Work 

Face recognition has been an active research topic for more than two decades because of its 

practical applications. Of particular note, face verification has attracted more attention in 

recent years, which latter aims to verify if an input image is that of the subject. This differs 

from face identification in that the test subject(s) in the input pair need not be included in the 

training dataset. However, in practical applications, the uncontrolled environment causes 

problems in terms of the immense variations in facial pose, expression, lighting conditions, 

occlusion, and so on, and the reliability of previous research developed with controlled 

settings are thus limited. In 2009, Kumar et al. [9] analyzed these failure cases and found that 
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these mistakes would be avoidable if more facial attributes can be analyzed separately before 

classification. The authors proposed two methods for facial verification in uncontrolled setting. 

The first method used high-level face representation to recognize the presence or absence of 

65 attributes, such as a round face, gender, and so on. The second method was based on a 

simile classifier and was aimed at recognizing the similarities between the facial regions of the 

test image pairs with an extra identity dataset as prior knowledge. 60 people were used in the 

study, which was a significant improvement for the LFW dataset [22]. However, this approach 

has to define a number of reliable and relevant features [5]. Inspired by the results detailed in 

[9], many alternative approaches addressed unconstrained face recognition/verification via 

robust feature learning [11], [23], [24-26], or the similarity measures between feature 

descriptors [14], [27].  

For feature extraction, texture-based local features are applied to face 

recognition/verification, including LBP [28], SIFT [29], and Gabor [30], [31]. In 2004, 

Ahonen et al. [4] investigated the LBP feature, which encodes the relationship intensity 

between each pixel and its neighboring pixels, and the authors found that this approach yielded 

good results. LBP can be insensitive to lighting changes and provides promising results when 

compared to global feature and other texture-based approaches [4]. Further modifications of 

the LBP approach have since been proposed [32-34]. Rather than using one specific feature, 

the strategy of combining multiple features has been applied to face verification [35], [36]. In 

[35], the authors combined multiple texture-based features in the score-level fusion and shown 

that such a combination can provide better verification results than the use of one specific 

feature by approximately 5.7% on average. Color information is another important feature and 

the integration of color information can improve recognition performance compared to 

methods relying solely on color or texture information [37-39]. In [36], the authors proposed 

new features including color local Gabor wavelets (CLGWs) and color local binary patterns 

(CLBP), to combine texture and color features. The use of texture and color information 

remains however an open problem [36]. Instead of designing handcrafted encoding methods, 

the approaches of [6] and [40] applied learning frameworks to select the discriminant features 

in order to avoid the difficulties associated to obtaining optimal encoding methods manually. 

In [6], an unsupervised learning-based method was proposed to encode the local 

micro-structures of a face into a set of more uniformly distributed discrete codes. Middle-level 

features using unsupervised feature learning with deep network architectures [11], [24-26] 

have also been applied to face verification. Further information regarding this study can be 

found in [41] and [42]. 

After obtaining the feature descriptors, the subsequent process for face verification is to 

measure the similarity between the two descriptors. Inspired by the idea of “One-Shot 

Learning” techniques [43], [44], Wolf et al. [45] proposed the one-shot similarity (OSS) 

approach to classify a pair of test images via a discriminant model learned from a single 

positive sample, and a set of prior background negative samples to solve the problem of 

limited positive samples. Following this, in [46] the authors extended the OSS approach by 

combining multiple OSS scores to improve the recognition rate and further considering the 

ranking results of the query image to propose the “Two-Shot Similarity” (TSS) approach [35]. 

Although the discriminative models are produced as per the vectors being compared [35], [45], 

[46] and are often better suited to comparing the test pair, two classifiers need to be trained 

each time when two images are compared. Depending on the classifiers used in the 

implementation, this may lead to additional computational cost in the test process. With the 

aim of discovering recognition capability for two faces in an uncontrolled environment, Yin et 

al. [10] proposed an “Associate-Predict” (AP) model for face recognition based on the 
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conjecture that the transition process is performed with given prior knowledge in a person’s 

brain. The model is built on a prior identity dataset, which differs from the extra unlabeled 

datasets of [9], [35], [45], [46], where each identity has multiple facial images with large 

intra-class variations. When a pair of test images is compared, the input face with a number of 

the most similar identities from the identity dataset is first associated, and the new appearance 

of the input face in different settings is predicted using appearance-prediction matching. In 

addition, one person-specific classifier is trained for likelihood-prediction matching. The 

accuracy of facial component extraction and the selection of the correct identity for 

appearance prediction have influenced the performance of the association-prediction model. 

Different from [9] of using the global unlabeled dataset, the authors built the person-specific 

model on a prior identity dataset to classify the input face against the most similar faces to 

improve recognition. As in [46], [35], the use of the on-line classifier may have additional 

computational cost. 

In spite of the new frameworks that have been proposed for face verification [9], [35], [45], 

[46], the similarity measure between facial descriptors is the core of these research. The 

information theoretic metric learning (ITML) [16] approach for example is applied for each 

OSS score [46]. In order to tackle the highly entangled data distribution captured in the 

uncontrolled environment [47], the k-NN classifier is the simplest non-linear classifier that is 

most often applied on the basis of the Euclidean distance metric for recognition. However, the 

Euclidean distance metric ignores the statistical properties of data that might be estimated 

from a large training set of labeled examples [13]. Several other distance metric algorithms 

[14-20] have also been proposed to obtain a new distance metric to investigate data properties 

from class labels. In [27], cosine similarity metric learning (CSML) was proposed to learn a 

transformation matrix by measuring the cosine similarity between an image pair. In addition, 

the Mahalanobis distance metric learned based on the various objective functions. Relevant 

component analysis (RCA) [15] is intermediate between the unsupervised method of PCA and 

supervised methods of LDA using the chunklet information, a subset of a class, to learn a 

full-ranked Mahalanobis distance metric. Unlike LDA, since between-class information is not 

explicitly imposed in the objective function, the improvement for the k-NN based 

classification with the RCA metric is limited. Similar to the goal of LDA of minimizing the 

distance between for within-classes whilst maximizing the distance for between-classes [48], 

Xing et al. [19] proposed a Mahalanobis metric for clustering (MMC) with side information 

that represented the first convex objective function for distance metric learning. Because 

MMC was built with the normal or unimodel assumption for clusters, it is not particularly 

appropriate for k-NN classifiers [13].  In contrast to RCA and MMC, the large margin nearest 

neighbor (LMNN) classification [13] is the first method for imposing a constraint on the 

distance metric for the k-NN classification. Thus, via the metric, the k-nearest neighbors 

always belong to the same class, while examples from different classes are separated by a large 

margin. A series of experiments have been conducted to prove that the LMNN approach yields 

better results than PCA, LDA, RCA, and MMC [13]. In order to extend the LMNN approach 

to the binary-classes problem for face verification, Guillaumin et al. [14] proposed a logistic 

discriminant-based metric learning (LDML) to modify LMNN constraints with a probability 

formulation by learning a metric from a set of labeled image pairs. LDML can provide better 

results than [16] in the binary-classes problem. In addition, the comparison mechanism, a 

marginalized k-NN classifier (MkNN), was also proposed to verify a test pair by a set of 

labeled images. However, an incorrect classification results when two images of the same 

subject receive a low similarity rating if the class labels for their corresponding k nearest 

neighbors are uniformly distributed. 
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3. Overview of the Proposed Face Verification System 

Fig. 1 shows an overview of the training and test process in the proposed face verification 

system. The training process commences by detecting faces from training images and 

normalizing face geometry according to the locations of eyes. By considering the spatial 

information of the face, the face image is divided into  regions. Then the 59-dimensional 

feature of the local binary pattern is extracted from each region and the features are further 

concatenated into one 531-dimensional feature vector . To develop a discriminant metric 

for verification, Np positive pairs (two images of the same subject) and Nn negative pairs (two 

images of different subjects) are generated from the training dataset. Then, these training pairs 

are used to learn the distance metric MDis, which is composed of two ideas, MLMNN and MDML. 

The distance relationship of the positive pairs is learned via the distance metric MLMNN [13], 

and the distance relationship of the negative pairs is learned via our proposed metric MDML. 

Hence we can minimize not only the within-class distance, but we can maximize the 

between-class distance. Note that violations of the distance relationship for the negative pairs 

is heavily penalized via MDML to reduce the false positive rate for unconstrained verification. 

In the test process, a test pair of two facial images is input and the LBP features are extracted 

for each test image as in the training process. Then the similarity between each test image and 

the training images are evaluated based on the trained distance metrics MLMNN and MDML, 

respectively. The proposed verification mechanism, correlation of the k-nearest neighbor 

(CkNN), constructs the corresponding k-NN code for each test image and then measures the 

correlation between two k-NN codes. This measurement is then applied to decide whether the 

test pair are the same subject or not.  

 
Fig. 1. Flowchart of the proposed face verification system. (a) The training process (b) The test process 
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4. Face Verification System  

In this section, we discuss the details of the proposed distance metric and the verification 

mechanism. First, we introduce the extracted features, and then the design concept for the 

proposed distance metric and the optimization process. Lastly, we show the coding and 

verification mechanism, namely CkNN. In the following discussion, the training data set is 

composed of N subjects with  images, denoted as , and the size of each image is 

. 

4.1 Feature extraction by LBP 

The LBP is a kind of texture-based feature that has been demonstrated to perform face 

recognition very well [28]. Its mechanism is the use of binary codes to present the intensity 

(gray-value) relationship between the processing pixel and its surrounding pixels. For each 

processing pixel these binary codes are then transformed into a decimal value; and then the 

statistical distribution of the decimal values from all pixels are represented by a histogram as 

the facial feature vector. Fig. 2 shows examples of giving an image a gray value according to 

its corresponding decimal value. We can see that the dark pixels correspond to those facial 

components and facial contours. Note that in [28], binary codes are further divided into 

uniform and non-uniform patterns. A uniform pattern is one with the changes between binary 

codes, i.e., 0 to 1 or 1 to 0, occurring fewer than two times, and the remaining patterns are 

designated as non-uniform patterns. From Fig. 3, we can see that the uniform patterns can 

capture the local important features such as corners and edges, and hence they are recorded in 

one specific bin in the histogram, and all of the non-uniform patterns are recorded in one bin. 

The resulting facial image can be represented by a 59-dimensional histogram. 

 

 
Fig. 2. Coding results of a local binary pattern 

 

 
Fig. 3. Examples of a uniform pattern corresponding to locally important facial features 

 

The usage of a statistical histogram as a feature representation is popular [49]. One advantage 

is that it can overcome rotation variance, but the disadvantage is the loss of spatial information. 

When the geometry is important, the damage is obvious. In order to cope with this situation, 

one way to maintain the geometric relationship is to divide the object (face) into multiple 

regions [28]. Then one histogram can be used to represent each region, and the final feature 

vector can be obtained by concatenating all histograms. In our work, therefore, we divide one 

facial image into  regions, each of which is represented by a 59-dimensional feature 

vector. In the end, 9 histograms are concatenated into one 531-dimensional feature vector of 
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the data for each training face. 

4.2 Distance Metric Learning 

LMNN [13] is one of the state-of-the-art metrics designed for the Mahalanobis distance 

measure which can reduce within-class distance and enlarge between-class distance. Hence, 

using this metric, the k-NN classifier can benefit from these modified distance relationships. 

However, the distribution of unconstrained facial data for the same class is highly non-linear, 

and even they are entangled for different classes [47]. Hence, we use LMNN to minimize 

within-class distance and discriminant metric distance metric learning (DML), which is 

designed to penalize violations of between-class distance relationships. 

4.2.1 Large-Margin Nearest Neighbour Metric Learning 

LMNN metric learning [13] derives a metric favored by the k-NN classifier to calculate the 

Mahalanobis distance between data values  and  via matrix MLMNN as 

  

                                                                                              (1) 

 

If the matrix is degenerated into one identity matrix, Eq. (1) can estimate the Euclidean 

distance between  and . The idea of LMNN, as shown in Fig. 4, is to minimize the 

within-class distances (the distance between the blue squares) while maximizing the 

between-class distances larger than one unit (the distance between blue squares and black 

triangles). In other words, for each data value , the main object is to minimize the distance 

for the positive pairs ( , ) where  is one target neighbor [13], i.e., one of the k nearest 

neighbors having the same class label as , while maximizing the distance for the negative 

pairs ( , ) where  is one of the k-NNs having a different class label for . Thus the 

objective function can be derived as in [13]: 
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where MLMNN is a semi-definite matrix, i.e., all the eigenvalues are equal or larger than 0,  is 

the parameter that controls the importance of the within-class distance and the between-class 

distance, and ξ is a slack variable to penalize violations of distance conditions between ( , ) 

and ( , ). In Eq. (2), the first term minimizes the distance of the positive pairs, and the 

second term uses ξ to maintain the distance of the negative pairs as greater than the distance of 

a positive pair within one unit. More details about the optimization process can be referenced 

in [13]. 
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Fig. 4. Schematic illustration of LMNN. Each data value is represented by an icon, with three classes 

(square, triangle, and circle) shown. The left figure shows the data relationship before using the LMNN 

metric. After using the LMNN metric, the right figure shows the modified data relationship for xi. with 

its neighbors, and specifically the within-class distances. The distance between blue squares is 

minimized while the between-class distances, shown as distance between the blue squares and black 

triangles, are maximized. 

4.2.2 Discriminant Metric Learning 

In order to tackle entangled data distributions to reduce the false positive rate, one 

discriminant metric is designed to enhance the penalization for negative pairs violating the 

distance relationship, i.e., where the between-class distance is smaller than within-class 

distance in a unit save range. Fig. 5 shows a schematic illustration of the discriminant metric 

wherein if the distance of the negative pairs, i.e., the distance between the processing of data 

 and its neighbors having different class labels (as shown in black triangles), is smaller than 

the distance of the positive pairs, a larger cost is assigned. On the other hand, if the distance 

between negative pairs is larger than the distance between positive pairs, a smaller cost is 

assigned. Hence, via the sigmoid function, which ranges from 0 to 1, the objective function for 

the discriminant metric is designed as follows: 

 

                                                                  (3) 

where  is the sigmoid function,  and  are ’s neighbor sets whose 

class labels are the same as  or not, respectively, and  is the Mahalanobis distance 

between  and  (or ), which is measured with the distance metric M. When the 

parameter z is larger, the function value  is closer to 1, while if z is smaller,  is 

closer to 0. In contrast to Eq.(1) , the sigmoid function is a convex function and a first-order 

derivative. Thus the optimal value for MDML can be obtained by taking the derivation for M as 
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where , , 

, , and  and  are the distances of the 

positive and negative pairs, respectively. Using the gradient descent method and setting the 

initial value as an identity matrix, the optimal value of MDML can be obtained. According to the 

optimization process, the time taken for each iteration includes: 1) the distance calculation 

time for training examples, and 2) the distance metric updating time, where the computational 

complexities are O(nd
2
+n

2
d) and O(knd

2
) respectively, in which n is the number of training 

data, k is the number of neighbors, and d is the dimension of LBP feature. Because the distance 

calculation of the training data is independent to each other, this step can be parallelized in 

distributed computing framework like MapReduce to speed up the offline processes. In such 

framework, each computing node can serve a part of the training samples to accelerate the 

training process time for DML, and therefore the execution of the offline processes can be fast. 

 
Fig. 5. Schematic illustration for DML.The left figure shows the data relationship before using the DML 

metric. After applying the DML metric, the right figure shows the modified data relationship for xi with 

its neighbors that have a different class label from xi. Specifically, the between-class distances denoted 

as black triangles are maximized. 

4.3 Correlation of the k-NN Code 

For verification, the output predicts whether a pair of images belongs to the same class. In [14], 

the authors considered the neighbor’s class labels and proposed the MkNN [14] to measure the 

label distribution similarity between neighbors. However, when the data distribution is heavily 

entangled in the transformed metric space and this leads to two images of the same subject 

surrounded by data from different subjects, the worst case is that k neighbors are from 

different k subjects, and the classification might be wrong due to the low distribution 

probability. 

With MkNN, instead of estimating only the data distance via Eqs. (2) or (3) to predict 

whether they are the same class or not, their corresponding neighbors’ class information is 

considered. After learning the distance metrics MLMNN and MDML, during the verification 

process each data value  is extracted from the local binary patterns and then the distances 

from the training images based on MLMNN and MDML are measured to obtain the corresponding k 

nearest neighbors, denoted as  and , respectively. Then the k-NN code  

and  for  is defined as follows: 

 

                                                                                                         (5) 

and 
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                                                        (6) 

 

where the dimensions of  and  are the number of classes,  is an indicator 

function, K is the number of nearest neighbors,  and  are the k-th nearest neighbor 

for  measured by MLMNN and MDML, respectively, and the corresponding labels are denoted 

as  and . In other words, the k-NN code contains the class label distribution 

of neighbors surrounding . Fig. 6 shows an example and the corresponding k-NN code 

. 

After obtaining the k-NN code for each image of the test image pair , verification is 

performed by computing the correlation coefficients of k-NN codes by 

 

                                     (7) 

and 

                                 (8) 

 

where , , , and  are the c-th elements in the corresponding k-NN code 

 and , , and , respectively, and , , , and  

are the corresponding means. The final verification result is defined as 

 

                                                          (9) 

 

where  is the threshold.  indicates that the test image pair  are the 

same subject, else they are different subjects, and  is a weighted similarity of  and 

 with the coefficient w given by 
 

                                                                                                (10) 
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Fig. 6. Example of k-NN code construction.The code size is the number of classes (4, in this example). 

For , 7 nearest neighbors measured by the distance metrics MLMNN and MDML is used to find the k 

nearest neighbors and the k-NN code is . 

 

5. Experimental Results 

We evaluate the performance of the proposed verification system using the LFW dataset [22], 

which is a challenging benchmark for face verification. We first describe the training and test 

protocols for the experiments, then describe the experiments conducted to investigate the 

optimal parametric setting of the proposed approaches. Finally, we compare our proposed 

approach with existing algorithms.   

5.1 Training and test protocol 

The LFW database is a challenging database as it comprises 5749 subjects of 13,233 images 

downloaded from Yahoo! News between 2002-2003. It contains a large variety in facial poses, 

expressions, lighting conditions, and occlusions, as shown in Fig. 7. Because the image 

numbers for subjects vary, according to our proposed approach to learn the distance relation 

between positive and negative pairs, only subjects that contain more than 10 images are 

selected and 116 subjects with 1691 images are used in our experiments. Note that aligned 

versions of faces are used in the following experiments, and after face detection, only the 

central part of the 100×120 pixels is cropped. For each experiment, ten runs are performed and 

each run randomly selected 10 images for each subject in the training process. The remaining 

images are used for the test 

 
Fig. 7. Facial examples in the LFW database 

5.2 DML parametric settings 

In Eq. (10), our approach measures the distance of one image from the other training images 

using two distance metrics: LMNN [13] and our proposed metric DML. We used the value w 

for a weighted combination of the measured distances using these two metrics. In other words, 

the weighted value w indicates the importance of each of the distance metrics. We set w to be 

from 0.4 to 0.7. We then used the receiver operating characteristic (ROC) curves with the 

x-axis for a false positive rate (FPR) and the y-axis for a true positive rate (TPR) to show the 

experimental results Fig. 8. We can see that the effect of the weighted value is not obvious. 

Table 1 lists the true positive rate when the false positive rate is set to 0.3. Because w=0.6 
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yielded the best results, this value was set for the following experiments. 

In the second experiment, we investigated the k value of the k-NN code for verification, 

which can be seen as a range in the feature space. For each image the k-NN code estimates the 

label distribution of k neighbors from 1160 training images. Two images of the same subject 

should have similar label distributions. From the results shown in Fig. 9, we can see that when 

k is smaller than 40 (about 0.035 times the training images), performance is unsatisfactory due 

to insufficient statistical information for comparison. However, when a large k value is used, a 

confusing situation happens. This is why when k is larger than 100 (about 0.086 times the 

training images), the performance is degraded as well. This is because in our experimental 

settings each subject has ten images in the training database and with the k value set to 100, we 

see that the estimate of the label distribution for each image is based on approximately 10 

subjects.  However, the LFW database has a great variety of appearances for subjects, and the 

large distribution of similar data measurements causes confusion. Table 2 shows the true 

positive rate with the false positive rate set to be 0.3. According to our results, k is set as 60 in 

our experiments. 

 

 
Fig. 8. ROC curves by setting various weighted values for w in Eq. (10). 

 

 
Fig. 9. ROC curves by setting various k values of the k-NN code for verification. As shown, a k value 

that goes from 40 to 80, about 0.035 to 0.070 times the training data size, is recommended. 
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Table 1. True positive rate with a 30% false positive rate by setting various weighted values for w 

Weighting value w 0.4 0.5 0.6 0.7 

True positive rate 82.41±0.5% 82.95±0.4% 84.32±0.4% 82.89±0.5% 

 

Table 2. True positive rate with a 30% false positive rate by setting various values for k in k-NN code  

k values 5 10 20 40 

True positive rate 68.83±1.0% 75.74±0.7% 80.48±0.7% 83.52±0.5% 

k values 60 80 100  

True positive rate 84.32±0.4% 84.01±0.5% 83.71±0.6%  
 

 
Fig. 10. ROC curves by different measurement approaches for the k-NN code: MkNN and the proposed 

approach, CkNN.  

 

In addition, in the test process, when obtaining the k-NN code for each input test image, rather 

than using probability to measure the k-NN code similarity as with MkNN [14], we propose 

the CkNN approach to measure the correlation coefficients of the k-NN code. Fig. 10 

compares the ROC curve with MkNN [14]. When the false positive rate is set to be 0.3, the 

true positive rate for MkNN and the proposed measurement approach for the k-NN code are 

81.22% and 84.32%, respectively. The proposed approach has a better result than MkNN 

because MkNN makes an incorrect classification when two images of the same subject receive 

a low similarity rating if the class labels of their corresponding k nearest neighbors are 

uniformly distributed. 

5.3 System performance comparison 

The proposed metric LMNN + DML using CkNN is compared with the existing metric 

learning algorithms LMNN [13] and LDML [14] with the classification mechanism MkNN. 

Fig. 11 shows the ROC curves. Using the classification mechanism CkNN, LMNN + DML 

can compensate for the drawbacks of LMNN and DML and provide better results than LMNN 

or DML alone. In addition, if using only the proposed metric DML with CkNN, better results 

are provided than when using LDML with MkNN [14]. Table 3 lists the true positive rate 

value when the false positive rate is set to be 0.3. Compared with LMNN alone, integrating 

DML with LMNN can improve the verification rate by 4.3%.   
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To further analyze the verification power of LMNN and DML together, for each test image 

, we generated m test pairs with training images as  i=1~m (m=1160 in our 

work) to verify whether or not  are the same subject. Figs. 12 and 13 show 

examples of images, which were incorrectly classified more than by  times by LMNN 

and DML, respectively. We see that the error examples for LMNN are those images with 

larger variations in pose, expression, and occlusion while the errors for DML are frontal 

images. This is because only between-class information is considered by DML and its 

estimated data distribution for within-class is not as compact as that by LMNN. Hence, 

compared with LMNN, DML is expected to modify the distance relationships for 

between-class data to cope with large variations. To verify DML’s abilities we selected 51 

outlier examples (as shown in Fig. 14) including 20 images with non-frontal poses, 20 images 

with exaggerated expressions, and 11 images with heavy occlusions for test, and the ROC 

curves are shown in Fig. 15. The true positive rate with a false positive rate of 0.3 for LMNN 

and DML are 66.86% and 71.96%, respectively. We can see that DML has more tolerance for 

facial variations than LMNN. Therefore, in our method, we integrate LMNN and DML so they 

can compensate for each other.  

Table 3. Performance comparison of true positive rate with 30% false positive rate  

Metric Algorithms LMNN+DML+CkNN LMNN+CkNN DML+CkNN LDML+MkNN 

True positive rate 84.32±0.4% 80.5±0.6% 74.91±1.0% 41.67±1.2% 

 

 
Fig. 11. Comparison of ROC curves obtained by the proposed approach and other existing methods: 

LMNN+DML+CkNN, LMNN+CkNN, DML+CkNN, and LDML+MkNN  

 

 
Fig. 12. Examples that are incorrectly classified more than one half of test data by LMNN 
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Fig. 13. Examples that are incorrectly classified more than one half of test data by DML 

 

 
Fig. 14. Outlier examples used to analyse DML’s abilities in between-class verification 

 

 
 

Fig. 15. ROC curves obtained by LMNN and DML using 51 outlier examples 

 

In addition, we study the impact on number of failure cases by using the different 

appearance factors including frontal view (the cases with out-of-plan rotation), 

expression (excluding the cases of natural expression), pose (excluding the cases of frontal 

view), and others (the remaining cases from the above factors) for LMNN+DML and LMNN 

as shown in Fig. 16. The three examples shown in Fig. 16 (a)-(c) are the most improved cases 

and the three ones in Fig. 16 (d)-(f) are the worst cases.  The test example in Fig. 16 (a) is a 

slightly rotated smile face. Compared with LMNN, LMNN+DML has the improved rates, 

7.1%, 43.3%, 77.8% and 71.4% for frontal view, expression, pose and other factors, 

respectively. The test examples in Fig. 16 (b) and Fig. 16 (c) are with occlusion and 

non-frontal views with expression, respectively. It is not surprisingly that the number of 

failure cases of the frontal view factor is more than that of the ones in Fig. 16 (a) and (c) due to 

the occlusion and the missing of facial information. The integration of DML and LMNN can 

reduce the error rate 26.4% and 58.1 % for frontal view and pose, respectively. In Fig. 16 (c), 

because the variations in the rotation angle and the expression degree are higher than those in 

Fig. 16 (a), more failure cases happened for both LMNN+DML and LMNN, especially in the 

expression and pose factors. For the three cases shown in Fig. 16 (a)-(c), we have the 
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significant improved rate 52.8% in the pose factor on average. 

The test example of Fig. 16 (d) is a woman with a hat, which caused uneven shadow on her 

face. For LMNN+DML, the number of failure cases of the frontal view is higher than that of 

expression, pose or other, and we also observed that the degrading ratio is significant as 

compared with LMNN. Although the distance relations of the negative pairs which violated 

the constraint are modified in the training process, those negative data are still close in the 

transformed space. Fig. 16 (e) is the test example of being occluded by a white head band. The 

numbers of failure cases of the four factors are higher than those of pure LMNN.  Fig. 16 (f) 

shows the results for a grin. Because many female subjects are collected with expression in the 

LFW dataset, especially smile and grin expressions, the data distribution is much entangled 

and error rate is therefore higher than that of the other five cases for both LMNN and 

LMNN+DML. We observed that the degrading degree is small in the pose and expression 

variations and DML considering only the distance relation of negative pairs has limitation for 

inter-class variations of frontal views. 

 

 
Fig. 16.  The impact on number of failure cases by using the different appearance factors including 

frontal view (the cases with out-of-plan rotation), expression (excluding the cases of natural 

expression), pose (excluding the cases of frontal view), and others (the remaining cases from the above 

factors) for LMNN+DML and LMNN with the test example shown in the top-right corner. 

 

Fig. 17 has been modified in accordance with the test examples as in Fig. 16 to show the 

failure examples classified by LMNN and LMNN+DML. From Fig. 17 (a) and (c) we see that 

DML can help to correctly classify images with large variations that were incorrectly 

classified by LMNN. For examples, the facial images with expression and slightly out-of-plan 

rotation angle (the first row in Fig. 17(a)), and even larger rotation angle and occlusion in the 

cheek (the second row in Fig. 17(a)) can be correctly classified by DML. Fig. 17 (c) shows 

that the DML is able to classify cases with higher degree of expression and grinning 

expression than LMNN (Fig. 17 (a)). We observed that the images with higher degree of 

expression (the first row in Fig. 17 (c)) and rotated facial images (the second row in Fig. 17 (c)) 
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can be rescued by DML from LMNN. However, DML has limited correction ability for 

images with small variations, as shown in Fig. 17 (b) and (d). Regardless of inter-class 

 

 
Fig. 17. (a) and (c) are misclassified examples incorrectly classified by LMNN but correctly classified 

by LMNN+DML. (b) and (d) are misclassified examples incorrectly classified by both LMNN and 

LMNN+DML. The test image is shown with green edge. 

 

variations, we can observe these failure cases are near frontal view images with lower degree 

of smile expression (the first row in Fig. 17 (b) and the first row in Fig. 17 (d)) as compared 

with the examples in Fig. 17 (a) and (c) or with natural expression (the second row in Fig. 17 

(c) and the second row in Fig. 17 (d)). The conclusion is consistent to the results as observed 

in Fig. 16 that the improved rate of the frontal view in the Fig. 16 (a)-(c) is smaller than that of 

the pose factor, and the test examples might be incorrectly classified, leading the low accuracy 

rate as shown in Fig. 16 (d)-(f). The reason is that considering only the class label distribution 

of nearest neighbors in the test process may cause this misclassification, especially for the 

entangled data distribution like the LFW dataset.  In order to improve the accuracy rate, 

combining multiple complementary features like texture and color [36] or learning more 

robust features by deep network architectures [41], [42] from facial images can reduce the 

inter-class variation. Some researchers also tried to classify images by using the ranking 

results from the training data or extra data set [35] to improve the accuracy for the entangled 

data. 

6. Conclusion 

In this paper, we propose a face verification framework that uses a distance metric based on 

two concepts. First, we propose a distance metric “DML” that penalizes violations of the 

distance relationship of negative pairs. Second, the distance relationship of positive pairs is 

optimized via LMNN. The experimental results confirm that the proposed verification 

framework can reduce the false positive rate than that by using only LMNN. Moreover, the 

proposed classification mechanism, by measuring the label distribution of a k-NN code in two 

images, can modify the errors caused by low probability for an entangled data distribution and 

provide better performance than MkNN. In this study, only texture-based local features are 

extracted from facial images. Inspired by the impressive recognition rate improvements 

achieved by combining texture and color features [36], [40], we plan to investigate the use of 

this effective combination approach in the metric learning framework in future research.  
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