• Title/Summary/Keyword: Near-Wall Turbulence

Search Result 154, Processing Time 0.029 seconds

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation- (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석-)

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

Particle Dispersion and Fine Scale Eddies in Wall Turbulence (벽면난류에 대한 미세와 구조와 입자분산)

  • Kang, Shin-Jeong;Tanahashi, Mamoru;Miyauchi, Toshio
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1101-1106
    • /
    • 2006
  • To investigate a relation between fine scale eddies and particle dispersion in a near-wall turbulence, direct numerical simulations of turbulent channel flow laden particle are performed for $Re_{\tau}$=180. The motions of 0,8 million particles are calculated for several particle response times ($t_p$) which is the particle response time based on stokes’ friction law. The number density of particles has a tendency to increase with approaching the near-wall regions ($y^+$<20) except for cases of very small and large particle response times (i.e. $t_p$=0.02 and 15). Near the wall, the behavior and distribution of particles are deeply associated with the fine scale eddies, and are dependent on particle response times and a distance from the wall. The Stokes number that causes preferential distribution in turbulence is changed by a distance from the wall. The influential Stokes number based on the Burgers' vortex model is derived by using the time scale of the fine scale eddies. The influential Stokes number is also dependent on a distance from the wall and shows large value in the buffer layer.

TURBULENCE MODULATION OF THE UPWARD TURBULENT BUBBLY FLOW IN VERTICAL DUCTS

  • ZHANG, HONGNA;YOKOMINE, TAKEHIKO;KUNUGI, TOMOAKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • The present paper aims at improving the modeling of turbulence for the upward turbulent bubbly flow through the use of experimental databases that contain data on small and large vertical ducts. First, the role of bubble-induced turbulence was analyzed, which indicated the dominant role of the bubble-induced turbulence in the duct center for relatively high void fraction cases. Therefore, the turbulence therein was mainly focused on, which indicated that the stronger turbulence could be induced by bubbles in large ducts with similar void fractions as compared to that in small ducts. Next, the turbulence of upward turbulent bubbly flow near the wall is discussed to understand the interaction between the wall-induced and bubble-induced turbulence. It showed that the existence of a wall could suppress the bubble-induced turbulence given the same void fraction, and the existence of bubbles could also suppress the solely wall-induced turbulence as compared to the single-phase turbulent flow, even though the total turbulence is enhanced. The above characteristics indicated that the current turbulence modeling method needs to be modified, especially when the bubble-induced turbulence plays a dominant role.

Correlation of Wall Vorticity and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer (난류경계층에서 벽와도와 유동방향 속도섭동과의 상관관계)

  • Ryu, Sang-Jin;Kim, Seong-Uk;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.523-532
    • /
    • 2001
  • A simultaneous measurement of wall vorticity and near-wall streamwise velocity fluctuations has been performed using a V-type wall vorticity probe and an I-type velocity probe to investigate the relation between them. Long-time averaged space-time correlations show that the wall vorticity is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction and that there is a streamwise vortex pair near the wall. It is shown that a structure correlated with the streamwise wall vorticity is smaller than and prior to a structure correlated with the spanwise wall vorticity. Tilting angles are obtained from the phase shift between the wall vorticity and streamwise velocity fluctuations. The tilting angle of the structure correlated with the streamwise wall vorticity is larger than that of the structure correlated with the spanwise wall vorticity. The convection velocity of the near-wall streamwise velocity fluctuations obtained from the space-time correlation is in good agreement with previous results.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Evaluation of Two-Equation Turbulence Models with Surface Roughness Effect (표면 거칠기 효과를 고려한 2-방정식 난류 모델의 성능평가)

  • Yoon, Joon-Yong;Chun, Jung-Min;Kang, Seung-Kyu;Byun, Sung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1681-1690
    • /
    • 2003
  • The effect of roughness is a change in the velocity and turbulence distributions near the surface. Turbulence models with surface roughness effect are applied to the fully developed flow in a two-dimensional, rough wall channel. Modified wall function model, low-Reynolds number k-$\varepsilon$ model, and k-$\omega$ model are selected for comparison. In order to make a fair comparison, the calculation results are compared with the experimental data. The modified wall function model and the low-Reynolds number k-$\varepsilon$ model require further refinement, while the k-$\omega$ model of Wilcox performs remarkably well over a wide range of roughness values.

Numerical Simulation of Rotating Channel Flows Using a Second Moment Turbulence Closure (2차 모멘트 난류모형에 의한 회전하는 평행 평판유동 해석)

  • Shin, Jong-Keun;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.578-588
    • /
    • 2000
  • A low-Reynolds-number second moment turbulence closure is improved with the aid of DNS data. For the model coefficients of pressure-strain terms, we adopted Shima's model with some modification. Shin and Choi's new dissipation-rate equation is employed to simulate accurately the turbulence energy dissipation rate distribution in the near wall sublayer. The results of computations are compared with DNS, LES data and experimental data for turbulent plane channel flow with rotation about spanwise axis. The present second moment closure achieves a level of agreement similar to that for the non-rotating. In particular, it accurately captures the distribution of turbulence energy dissipation rate in the near wall region.