Chang Ju Kim;Yoon Tae Hwang;Yu Min Ko;Seong Ho Yun;Sang Seok Yeo
The Journal of Korean Physical Therapy
/
제36권1호
/
pp.39-44
/
2024
Purpose: Cybersickness is a type of motion sickness induced by virtual reality (VR) or augmented reality (AR) environments that presents symptoms including nausea, dizziness, and headaches. This study aimed to investigate how cathodal transcranial direct current stimulation (tDCS) alleviates motion sickness symptoms and modulates brain activity in individuals experiencing cybersickness after exposure to a VR environment. Methods: This study was performed on two groups of healthy adults with cybersickness symptoms. Subjects were randomly assigned to receive either cathodal tDCS intervention or sham tDCS intervention. Brain activity during VR stimulation was measured by 38-channel functional near-infrared spectroscopy (fNIRS). tDCS was administered to the right temporoparietal junction (TPJ) for 20 minutes at an intensity of 2mA, and the severity of cybersickness was assessed pre- and post-intervention using a simulator sickness questionnaire (SSQ). Result: Following the experiment, cybersickness symptoms in subjects who received cathodal tDCS intervention were reduced based on SSQ scores, whereas those who received sham tDCS showed no significant change. fNIRS analysis revealed that tDCS significantly diminished cortical activity in subjects with high activity in temporal and parietal lobes, whereas high cortical activity was maintained in these regions after intervention in subjects who received sham tDCS. Conclusion: These findings suggest that cathodal tDCS applied to the right TPJ region in young adults experiencing cybersickness effectively reduces motion sickness induced by VR environments.
쌀의 이화학적인 성분분석과 관능검사에 의한 식미검정으로 품질을 평가하는 방법은 많은 시간적, 경제적인 비용이 수반되므로 소량의 시료로 신속하고 정확하게 품질을 검정할 수 있는 방법이 확립되면 양질미 품종 육성의 선발 효율을 높이고 쌀 품질을 등급화하여 유통시장에서 품질 인증제 도입시 평가 방법으로 적용할 수 있을 것이다. 이러한 목적으로 벼 68품종을 공시하여 근적외 분광 분석기를 사용하여 근적외 스펙트럼과 몇가지 이화학특성치간의 중회귀 분석에 의해 각각의 검량식을 작성하여 미지의 시료로 측정정확도를 분석한 결과는 다음과 같다. 1. 아밀로스함량 분석에서는 1파장에서 6파장으로 구성되는 5개의 검량식을 얻었으나 2208 및 2044nm의 2파장으로 구성된 검량식에서 측정정확도가 높았다. 2. 단백질함량 분석에서는 2파장에서 6파장으로 구성되는 5개의 검량식을 얻었으나 2220, 2236, 2128, 2152및 2092nm의 5파장으로 구성된 검량식에서 측정정확도가 높았다. 3. 무기성분인 Mg와 K 함량 분석에서는 각각 5개의 검량식을 얻었으나 Mg 함량은 1224, 1212, 1156 및 1204의 4파장 검량식에서 K 함량은 2304, 2292, 2260및 1152의 4파장 검량식에서 각각 측정 정확도가 높게 나타났다. 4. 확인용 시료의 이화학적 특성치와 근적외 분광 분석기에 의한 측정치간의 상관에서 상관계수는 단백질함량(0.93), K함량(0.83), Mg함량(0.80), 아밀로스함량(0.68)의 순으로 높았고, 모든 성분에서 높은 정의 유의한 상관이 인정되었다.
Some two years ago our company undertook a project on manufacturing network rationalization to maximize competitiveness through continuous improvement in manufacturing efficiency. One key outcome was the recognition of the benefits that could be derived from timely application of new technology or novel use of existing technologies and even more importantly the need to develop company wide strategies to maximize the impact of such applications. As a direct result an exercise was undertaken to identify the ten most promising technologies from a list of literally hundreds seen as having the capability of making a rapid impact on the manufacturing initiative. One of the outcomes of this exercise was the identification of Near Infrared Spectroscopy as a pivotal technology for improving process understanding, performance, and control to deliver consistent product quality cost effectively with broad applicability across our product range. While NIR had been in use in targeted areas on some of our sites for some years our new challenge was to develop a strategy to extend NIRs application, initially over 17 manufacturing sites, while concurrently expanding the NIR skill base company wide to ensure that the return on initial investment could be further maximized as shared applications across the remaining sites as required. This presentation will provide an overview of how life cycle based user requirement specifications were developed covering: ㆍSpectrophotometers ㆍSample interfaces ㆍSoftware ㆍEquipment and Software qualification ㆍCalibration transfer ㆍ Ease of developing effective user interfaces and control for applications transferred to a production area ㆍUser training ㆍWorld wide support The presentation will also describe the process adopted for vendor selection to ensure maximum utilization of the existing company wide NIR skill base and its future development to expedite applications of the technology in development, quality control and production areas.
근적외 분광분석법으로 사과의 유리산 함량을 비파괴적으로 측정함에 있어서 사과 착즙액의 갈변에 의한 영향은 있었으나 실활처리 및 적정 알칼리액 농도는 측정 정확도에 영향을 주지 않았다. 수확기 사과의 유리산 함량은 수확 시기를 달리한 시료로 작성한 검량식을 사용하여 측정하였는데 중회귀분석 결과, 중상관계수(R)는 0.77이었고 측정오차(SEP)는 0.03%이었다. 저장 중인 사과의 유리산 함량은 저장하여 유리산 함량폭이 넓은 시료로 작성한 검량식을 사용하여 측정하였으며 그 결과 R은 0.90, SEP는 약 0.04%이었다. 근적외 분광분석법을 응용하여 사과 중의 유리산 함량을 정확히 정량하기는 다소 미흡하나 높은 산 함량치와 낮은 산 함량치를 가지는 사과로 분류하는 것은 가능한 것으로 판단되었다.
식품의 3대 영양소인 탄수화물, 단백질 및 지방의 일반적인 분석 방법은 Kjeldahl 및 Soxhlet 시험법과 같은 기존의 화학 분석 방법으로 분석하였다. 그러나 이러한 분석 방법은 시료의 전처리 과정이 필요하고 많은 비용과 분석 시간이 소모되며 복잡한 추출과정을 거친다는 단점이 있다. 따라서 본 연구에서는 국내 유통 식품 및 농산물 자원에 함유된 탄수화물, 단백질 및 지방의 함량을 근적외 분광분석법(near-infrared reflectance spectroscopy, NIRS)으로 신속하고 정확하게 동시에 측정할 수 있는 방법을 검토하였다. 분석시료는 517종의 다양한 식품 시료를 예측모델 개발용(calibration set) 412종과 예견치 분석용(validation set) 162종으로 구분하여 사용하였다. 기존의 화학 분석 방법에 의해 측정된 성분들의 분석 결과와 근적외 스펙트럼 데이터간의 상관관계를 조사하여 각 성분별 예측모델을 검토하였으며, 변형부분최소자승법(MPLS) 및 다양한 수처리와 산란보정을 이용한 결과, 탄수화물, 단백질 및 지방의 산란방식은 각각 weighted MSC, standard MSC 및 SNV only로 수처리는 각각 1차 미분(1st derivative, 4 nm gap, 5 points smoothing, 1 point second smoothing), 2차 미분(2, 5, 5, 3) 및 1차 미분(1, 1, 1, 1)을 적용하여 예측모델을 검토한 결과 $R^2$값이 0.971, 0.974 및 0.937로 높고 SEC값은 4.066, 1.080 및 1.890으로 낮은 최적의 예측모델을 개발하였다. 세 성분의 최적 예측모델에 의한 상관도와 잔차 히스토그램을 검토한 결과 세 성분 모두 근적외 분광분석법 예측모델로 적합함을 확인할 수 있었으며, 최적의 예측모델을 미지의 식품 시료 162종에 적용한 결과, 탄수화물, 단백질 및 지방의 $r^2$(SEP)값은 0.987(2.515), 0.970(1.144) 및 0.947(1.370)로 $r^2$값은 높으며 SEP값은 낮은 양호한 양상을 나타내었다. 그러나 지방의 결정계수($R^2$, $r^2$)값은 탄수화물, 단백질에 비해 다소 낮은 양상을 나타내므로 추후 식품 검체에 적용 시 탄수화물 및 단백질 성분에 비해 예측결과의 정확성이 다소 낮을 수 있다고 판단되어진다. 이상의 결과에서 전처리 단계에서 복잡한 추출과정, 많은 비용소모, 분석시간 및 고도의 분석기술을 요하는 기존 습식 화학분석 방법의 단점을 보완하고자 검토되었던 근적외 분광분석법은 다량의 식품분석 시료를 분석하기에는 매우 효율적이라고 생각되며, 이런 점들을 고려해 보면 근적외 분광분석 예측모델들은 추후에 미지 식품시료에 함유된 탄수화물, 단백질 및 지방의 기존 분석법을 대체하여 편리하고 빠르게 함량을 예측 가능할 것으로 판단된다.
종이기록물의 특성을 평가하고 일반적으로 사용되는 파괴적인 방법이었다. 이를 개선하기 위하여 비파괴적인 방법인 근적외선 분광법(Near infrared spectroscopy, NIRS)을 적용하였다. 국가기록원이 보유하고 있는 종이 중에서 복사지, 봉투용지, 백상지, 신문용지, 한지 등과 1960년대~1980년대 각종 종이기록물 총 28점을 시료로 이용하였고, 종이기록물의 특성 평가항목인 열단장, 내절강도, pH, 함수율을 분석하였다. 그리고 각 시료에 대한 NIR스펙트럼을 구하여 가장 최적의 검량곡선을 작성하고, 이 검량곡선의 직선성, 스펙트럼 범위, 재현성 등을 검토하여 본 분석의 정확성을 검증하였다. 각 항목별 상관관계($R^2$)와 표준예측오차(standard error of prediction, SEP)는 열단장은 $R^2$=91.44, SEP=0.508, 내절강도 $R^2$=92.62, SEP=0.281, 함수율은 $R^2$=94.09, SEP=0.931, pH는 $R^2$=94.79, SEP= -0.0631로 양호하였다. 근적외선분광법은 종이시료를 파괴하지 않고 신속하게 특성을 평가할 수 있는 방법의 가능성을 보여주었다.
In this paper, we designed a multimodal bio-signal measurement system to observe changes in the brain nervous system and vascular system during sleep. Changes in the nervous system and the cerebral blood flow system in the brain during sleep induce a unique correlation between the changes in the nervous system and the blood flow system. Therefore, it is necessary to simultaneously observe changes in the brain nervous system and changes in the blood flow system to observe the sleep state. To measure the change of the nervous system, EEG, EOG and EMG signal used for the sleep stage analysis were designed. We designed a system for measuring cerebral blood flow changes using functional near-infrared spectroscopy. Among the various imaging methods to measure blood flow and metabolism, it is easy to measure simultaneously with EEG signal and it can be easily designed for miniaturization of equipment. The sleep stage was analyzed by the measured data, and the change of the cerebral blood flow was confirmed by the change of the sleep stage.
본 연구에서는 벼 유전자원의 이화학적 대량 분석체계 구축을 위하여 비파괴 분석 방법 중의 하나인 근적외선 분광분석(NIRS) 예측모델을 개발하고, 미지 시료 적용 시 분석 정확도와 실재 적용가능성을 평가하기 위해 교차 검정과 외부 검정을 수행하였다. NIRS 예측모델 개발을 위해 농업유전자원센터 보유자원 중 511자원을 사용하였고, 그 중 아밀로스 농도 대표자원 200점을 추가 선정하여 보존자원과 증식자원의 아밀로스 및 단백질 성분 변화를 비교하였다. 습식분석 상호비교, t-Test를 통한 통계처리 결과로 볼 때 저장고 보존자원과 증식자원 간의 중대한 이화학적 성질의 변이 현상은 관측되지 않았으므로 NIRS 예측모델 개발에 보존자원을 사용하는 것은 가능할 것으로 판단되었다. 511 자원의 습식분석 결과 아밀로스 농도는 6.15-32.25%, 단백질 농도는 4.72-14.81%였다. 현미와 현미가루의 두 가지 시료 형태에 대한 NIR 스펙트럼을 얻었고 일련의 통계적 처리를 이용하여 NIRS 예측모델을 얻었다. 현미의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.906, 1.741, 0.995였고, 단백질 농도의 경우 0.941, 0.276, 1.011 이었다. 현미가루의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.956, 1.159, 1.001이었고, 단백질 농도의 경우 0.982, 0.164, 1.003이었다. 이와 같은 결과로 NIRS 예측모델 개발에는 가루형태의 시료가 효율적임을 알 수 있었다. 아밀로스 농도의 경우 9.62-16.58%의 자원밀도가 상대적으로 낮은 구간에 대한 보완을 위해 추가 200자원의 습식분석, NIRS 측정 수행하였으며, 보완된 최적 NIRS 예측모델의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.970, 1.010, 1.000 이었고 단백질 농도의 경우 0.983, 0.158, 0.998이었다. 최적 NIRS 예측모델의 미지시료 적용 시 정확도를 평가하기 위해 아밀로스는 132자원, 조단백질은 124자원을 검정자원으로 사용하여 외부 검정과정을 거친 결과 $R^2$, SEP 값은 아밀로스 농도의 경우 0.962, 2.349였고, 단백질 농도의 경우 0.986, 0.415였다. 이상의 결과를 종합해 볼 때 본 연구에서 개발된 NIRS 예측모델은 습식분석방법을 대체하여 벼 유전자원의 아밀로스 및 단백질 농도의 대량 분석에 효율적으로 적용 가능할 것으로 판단된다.
Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.
본 연구는 종래의 실험실 및 연구용 근적외선 분광분석기를 보급형 현장용 다수의 장비를 이용하여 신속하게 현장에서 조사료의 품질 평가의 예측 정확성을 평가하기 위하여 3년간 전국에서 수집된 이탈리안 라이그라스 사일리지 241점을 이용하여 연구용 장비 Unity Model 2500X에 구축된 Database를 활용하여 현장용 보급형 장비 Unity Model 1400에 맞춰 Database를 업데이트 하고 검량선을 작성 한 후 검량선 이설 알고리즘을 사용하여 검량선 이설결과 연연구용 장비와 거의 동일한 수준의 결과로 0.000%~0.343%로의 차이로서 현장에서 신속하게 NDF, ADF 및 조단백, 조회분등의 화학적 성분 및 수분, pH 젖산의 발효품질, 그리고 TDN, RFV의 조사료 품질 평가치를 실험실 수준과 같이 5분내에 동시에 분석 할수 있는 결과를 얻었다. 하지만 3년 동안 얻어진 검량선 작성용 시료는 유기적인 시료이므로 지역적 년도별 차이를 가져올 수 있다. 이는 향후 모집단에 의한 지속적인 검량식의 업데이트 및 Database 관리기법이 실험실 분석 및 이를 이용 검량식을 유지 관리 할수 있는 중앙 Control Center 의해서 관리되어져야 지속적인 현장분석이 가능하다는 것을 강력히 시사한다. 현장분석기라 하더라도 조사료 같은 농산물은 계속 변화하는 성질을 가지고 있으므로 현장분석시 변위를 쉽게 파악하여 이를 신속히 보강 하지 않으면 장기적인 분석이 되지 않는다. 그동안 여러 근적외선 분광법의 연구들이 이루어져 왔지만 현장에서 직접 사용할 수 없었을 뿐 아니라 지속성의 결여로 장비들이 잘 활용되지 않고 있었다. 조사료 같은 농산물 등은 단기적으로 맞지만 불과 1년 정도가 지나면 분석결과가 상당히 신뢰성이 결여되어 활용도가 떨어지는 현실이다. 결론적으로 조사료의 향후 계속적인 시료의 보강과 모집단 분석을 이용한 체계적인 관리 및 시료의 확충방식을 직관적으로 할 수 있는 GD(Global Distance) 및 ND(Neighbour Distance) 기법의 신호등 방식으로 손쉬운 한글화된 운영체재를 사용하게 된다면 향후 효과적인 분석을 수행할 수 있어 이에 대한 여러 기대효과가 예상되어진다. 마지막으로는 동일 목적으로 다수의 장비를 운영할 경우 장비마다 동일한 시료가 동일한 결과가 나올 수 있도록 하는 기법 및 손쉽게 검량식을 작성 할 수 있는 프로그램과 작성된 검량식을 장비에 직접 기존의 컴퓨터 Network에 연결 전송하고 관리하는 Network 기능이 필수적이라 할 수 있겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.