• Title/Summary/Keyword: Near allele line

Search Result 7, Processing Time 0.029 seconds

Screening of RAPD Markers for Fluoride Resistance in Bombyx mori L.

  • Chen, Keping;Yao, Qin;Li, Muwang;Wang, ong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.1
    • /
    • pp.11-14
    • /
    • 2003
  • NF733xin, the near allele line was obtained by means of crossing and backcrossing the silkworm race T6, which contained fluoride resistance major gene, to race 733xin, which was highly susceptible to fluoride toxicity. Two hundred RAPD random primers were used in the RAPD analysis of these 3 strains. Two molecular markers, OPB-08850 and OPB-10917, were obtained. OPB-10917 was used to detect the backcross generations. It was found that all the fluoride resistant individuals in each backcross generation had the same special band. These results proved that this marker was reliable.

Dry matter and grain production of a near-isogenic line carrying a 'Takanari' (high yielding, Indica) allele for increased leaf inclination angle in rice with the 'Koshihikari' (Japonica) genetic background

  • San, Nan Su;Otsuki, Yosuke;Adachi, Shunsuke;Yamamoto, Toshio;Ueda, Tadamasa;Tanabata, Takanari;Ookawa, Taiichiro;Hirasawa, Tadashi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.32-32
    • /
    • 2017
  • To increase rice production, manipulating plant architecture, especially developing new high-yielding cultivars with erect leaves, is crucial in rice breeding programs. Leaf inclination angle determines the light extinction coefficient (k) of the canopy. Erect leaves increase light penetration into the canopy and enable dense plantings with a high leaf area index, thus increasing biomass production and grain yield. Because of erect leaves, the high-yielding indica rice cultivar 'Takanari' has smaller k during ripening than 'Koshihikari', a japonica cultivar with good eating quality. In our previous study, using chromosome segment substitution lines (CSSLs) derived from a cross between 'Takanari' and 'Koshihikari', we detected seven quantitative trait loci (QTLs) for leaf inclination angle on chromosomes 1 (two QTLs), 2, 3, 4, 7, and 12. In this study, we developed a near-isogenic line (NIL-3) carrying a 'Takanari' allele for increased leaf inclination angle on chromosome 3 in the 'Koshihikari' genetic background. We compared k, dry matter production, and grain yield of NIL-3 with those of 'Koshihikari' in the field from 2013 to 2016. NIL-3 had higher inclination angles of the flag, second, and third leaves at full heading and 3 (- 4) weeks after full heading and smaller k of the canopy at the ripening stage. Biomass at full heading and leaf area index at full heading and at harvest did not significantly differ between NIL-3 and 'Koshihikari'. However, biomass at harvest was significantly greater in NIL-3 than in 'Koshihikari' due to a higher net assimilation rate at the ripening stage. The photosynthetic rates of the flag and third leaves did not differ between NIL-3 and Koshihikari at ripening. Grain yield was higher in NIL-3 than 'Koshihikari'. Higher panicle number per square meter in NIL-3 contributed to the higher grain yield of NIL-3. We conclude that the QTL on chromosome 3 increases dry matter and grain production in rice by increasing leaf inclination angle.

  • PDF

Identification of Novel Clubroot Resistance Loci in Brassic rapa

  • Pang, Wenxing;Chen, Jingjing;Yu, Sha;Shen, Xiangqun;Zhang, Chunyu;Piao, Zhongyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.42-42
    • /
    • 2015
  • Plasmodiophora brassicae, the causal agent of clubroot disease, does the most serious damage to the Brassica crops. The limited control approaches make that the identification of clubroot resistance (CR) is more important for developing CR cultivars of the Brassica crops. So far, 8 CR loci were mapped. However, the variation of P. brassicae leads to the rapid erosion of its resistance. To identify novel CR genes, we employed three mapping population, derived from crosses between Chinese cabbage and turnip inbred lines ($59-1{\times}ECD04$ and $BJN3-1{\times}Siloga$) or between Chinese cabbage inbred lines ($BJN3-1{\times}85-I-II$), to perform QTL analysis. Totally, 8 CR loci were indentified and showed race-specific resistance. Physical mapping of these 8 loci suggested that 4 were located previously mapped position, indicating they might be the same allele or different alleles of the same genes. Other 4 loci were found to be novel. Further, CR near isogenic line carrying each CR locus was developed based on the marker assisted selection. Verification of these CR loci was underway. Identification of these novel CR genes would facilitate to breed broad-spectrum and durable CR cultivars of B. rapa by pyramiding strategies.

  • PDF

Development of Near-Isogenic Line of japonica Rice Cultivar Saenuri without Lipoxygenase-3 (새누리 벼 품종 배경 lipoxygenase-3 결핍 자포니카 근동질계통 개발)

  • Park, Hyun-Su;Lee, Keon-Mi;Kim, Ki-Young;Kim, Jeong-Ju;Shin, Woon-Cheol;Baek, Man-Kee;Kim, Choon-Song;Park, Seul-Gi;Lee, Chang-Min;Suh, Jung-Pil;Cho, Young-Chan
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.190-200
    • /
    • 2019
  • It is reported that the absence of lipoxygenase-3 (LOX-3) may contribute to a reduction in stale flavor after the storage of rice. To improve the quality of stored rice of the Korean japonica rice cultivar, we conducted a breeding program to develop near-isogenic rice without LOX-3 in the genetic background of Saenuri, a mega variety of Korea. In the first step of the breeding program, we used a donor parent of LOX-3 null, Daw Dam, and a recurrent japonica parent, Sindongjin, to develop HR27873-AC12 by backcross (BC1), color test for introgression of lox-3, and anther culture for rapid fixation. In the second step, we used the donor parent, HR27873-AC12, and the recurrent parent, Saenuri, to develop HR28896-31-3-1-1 by backcross (BC1), marker-assisted selection (MAS) for lox-3, and phenotypic selection (PS) for agronomic traits. Finally, in the third step, we developed HR30960-186-2-1-2-1 (Jeonju624), derived from a cross between Saenuri and HR28896-31-3-1-1, by MAS for lox-3 and PS with high selection pressure for agronomic characteristics. Jeonju624 was confirmed with the introgression of lox-3 by molecular marker. Jeonju624 was a mid-late maturing rice with similar agronomic characteristics to Saenuri, lodging tolerance with short culm, erect plant architecture, and resistance to bacterial blight and rice stripe virus. The yield components of Jeonju624 were mostly similar to Saenuri, except for the 1,000-grain weight of brown rice. The appearance of the grain of Jeonju624 was better than that of Saenuri, and the characteristics of cooked rice were similar to those of Saenuri. In the genetic background analysis using 406 KASP (Kompetitive Allele-Specific PCR) markers, Jeonju624 was confirmed to be the near-isogenic line (NIL) of Saenuri with a 95.8% recovery rate. Jeonju624 is the NIL of Saenuri without LOX-3, and overcomes the linkage drag of Daw Dam with similar agronomic characteristics and genetic background to Saenuri. Jeonju624 can be utilized as a practical cultivar to improve the quality of stored rice, breeding material for the introgression of lox-3, and genetic material to elucidate the effect of introgressed genes.

QTL Mapping of Agronomic Traits in an Advanced Backcross Population from a Cross between Oryza sativa L. cv. Milyang 23 and O. glaberrima

  • Kang, Ju-Won;Suh, Jung-Pil;Kim, Dong-Min;Oh, Chang-Sik;Oh, Ji-Min;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • In the previous study, 141 $BC_3F_2$ lines from a cross between the Oryza sativa cv. Milyang 23 and O. glaberrima were used to identify favorable wild QTL alleles for yield component traits. In this study, we carried out QTL analysis of four grain morphology as well as four yield component traits using 141 $BC_3F_5$ lines from the same cross and compared QTLs detected in two different generations. The mean number of O. glaberrima segments in the 141 $BC_3F_5$ lines ranged from 1 to 13 with 2.69 and 5.71 of the average means of homozygous and heterozygous segments, respectively. There was a three-fold difference in the number of QTLs detected for four traits commonly evaluated in two generations (seven QTLs in the $BC_3F_5$ vs 21 in the $BC_3F_2$ population). The percentages of the phenotypic variance explained by QTLs in the BC3F5 population were similar to or less than those in the $BC_3F_2$ population. This is probably due to the difference in the genetic composition of two populations and the environmental effects. The locations of the QTLs commonly detected in both generations were in good agreement except for one QTL for spikelets per panicle. The yield QTL, yd3 was colocalized with the spikelets per panicle, spp3. Yield increase at this locus is due to the increase in spikelets per panicle, because both traits were associated with increase in spikelets per panicle and yield due to the presence of an O. glaberrima allele. Clusters of QTLs for grain morphology traits were observed in two chromosome regions. One cluster harboring five QTLs near SSR markers RM106 and RM263 was detected on chromosome 2. This population would serve as a foundation for development of the introgression line population from a cross between Milyang 23 and O. glaberrima.

Mapping QTL for Grain Quality Traits Using an Introgression Line Population from a Cross between Ilpumbyeo and Moroberekan in Rice (일품벼/모로베레칸 이입계통을 이용한 미질특성 관련 QTL 분석)

  • Ju, Hong-Guang;Kim, Dong-Min;Oh, Chang-Sik;Kim, Myung-Ki;Kim, Kee-Jong;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.429-436
    • /
    • 2009
  • We conducted a QTL analysis of grain quality traits using 117 $BC_3F_4$ and $BC_3F_5$ lines developed from a cross between Ilpumbyeo and Moroberekan. Genotypes of 117 $BC_3F_5$ lines were determined using 134 simple sequence repeat (SSR) markers. A linkage map constructed using 134 SSR markers was employed to characterize quantitative trait loci (QTL). The 117 $BC_3F_4$ and $BC_3F_5$ lines were evaluated for eleven grain quality traits in 2005 and 2006. A total of 18 QTLs were identified for eleven traits, and the phenotypic variance explained by each QTL ranged from 9.9% to 35.2%. Moroberekan alleles contributed positive effects in the Ilpumbyeo background at two QTL loci for 1,000 grain weight. Four QTLs, two for chalky rice and one each for 1,000 grain weight and head rice were consistently detected in two consecutive years indicating that these QTLs are stable. Clusters of QTLs were observed in three chromosome regions. One cluster harboring five QTLs including head rice and brown rice ratio near SSR markers RM190 and RM314 was detected on chromosome 6. Another cluster harboring grain weight and white belly was detected on chromosome 2. Increase in white belly at this locus might be due to the increase in grain weight due to the presence of the Moroberekan allele. The Moroberekan alleles at two QTL loci, gw3 and gw4 associated with increased grain weight might be useful in breeding programs to develop high-yielding cultivars.

Fine mapping of qBK1, a major QTL for bakanae disease resistance in rice

  • Ham, Jeong-Gwan;Cho, Soo-Min;Kim, Tae Heon;Lee, Jong-Hee;Shin, Dongjin;Cho, Jun-Hyun;Lee, Ji-Yoon;Yoon, Young-Nam;Song, You-Chun;Oh, Myeong-Kyu;Park, Dong-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.92-92
    • /
    • 2017
  • Bakanae disease is one of the most serious and oldest problems of rice production, which was first described in 1828 in Japan. This disease has also been identified in Asia, Africa, North America, and Italy. Germinating rice seeds in seed boxes for mechanical transplantation has caused many problems associated with diseases, including bakanae disease. Bakanae disease has become a serious problem in the breeding of hybrid rice, which involves the increased use of raising plants in seed beds. The indica rice variety Shingwang was selected as resistant donor to bakanae disease. One hundred sixty nine NILs, YR28297 ($BC_6F_4$) generated by five backcrosses of Shingwang with the genetic background of susceptible japonica variety, Ilpum were used for QTL analysis. Rice bakanae disease pathogen, CF283, was mainly used in this study and inoculation and evaluation of bakanae disease was performed with the method of the large-scale screening method developed by Kim et al. (2014). SSR markers evenly distributed in the entire rice chromosomes were selected from the Gramene database (http://www.gramene.org), and the polymorphic markers were used for frame mapping of a $BC_5F_5$ resistant line. Here, we developed 168 near-isogenic rice lines (NILs, $BC_6F_4$) to locate a QTL for resistance against bakanae disease. The lines were derived from a cross between Shingwang, a highly resistant variety (indica), and Ilpum, a highly susceptible variety (japonica). The 24 markers representing the Shingwang allele in a bakanae disease-resistant NIL, YR24982-9-1 (parental line of the $BC_6F_4$ NILs), were located on chromosome 1, 2, 7, 8, 10, 11, and 12. Single marker analysis using an SSR marker, RM9, showed that a major QTL was located on chromosome 1. The QTL explained 65 % of the total phenotype variation in $BC_6F_4$ NILs. The major QTL designated qBK1 was mapped in 91 kb region between InDel15 and InDel21. The identification of qBK1 and the closely linked SSR marker, InDel18, could be useful for improving rice bakanae disease resistance in marker-assisted breeding.

  • PDF