• Title/Summary/Keyword: Nd Magnet

Search Result 270, Processing Time 0.03 seconds

A Study on the Fabrication of Oil Seal Appartus by use of the Magnetite Magnetic Fluid (마그네타이트 자성유체를 이용한 기름밀봉 장치 개발에 관한 연구)

  • 강신우;김영삼
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.326-334
    • /
    • 1994
  • This paper describes the fabrication of the hydrophilic magnetic fluid with high viscosity and its application to oil seal apparatus used with the Nd-permanent magnet. The results are as follows. 1) The ultrafine magnetite particles under the size of $100\;{\AA}$ are first coated by the oleic acid ion and again adsorbed by the hydrophilic D. B. S. ion, and there by hydrophilic magnetic fluid with high viscosity could be made by dispersing them into the ethylene glycol. 2) In development of the oil seal apparatus using magnetic fluid and Nd-permanent magnet, the viscosity and magnetic susceptibility show high when the $Fe_{3}O_{4}$ content is over 50%(g/cc) in the fluid, so that such properties could improve highly the capability of oil seal. 3) The maximum of the resisting pressure of the oil seal using the ethylene glycol base magnetic fluid and the Nd-permanent magnet, is about $50\;g/\textrm{cm}^2$, under the condition of this experiment. Therefore the oil seal may not be suitable for the ship engine and the driving part of the automobile, and thus it needs a lot further complementary reserch. However, it is quite favourable for such an oil seal apparatus as speed reducer under the condition of atmospheric pressure.

  • PDF

The Micro Electromagnetic Force Measurement of Voice-coil Actuator using Semiconductor Piezoresistive Type Vibration Sensor (실리콘 압저항형 진동 센서를 이용한 Voice-coil형 구동기의 미소 전자력 측정)

  • Gwon, Gi-Jin;Lee, Gi-Chan;Park, Se-Gwang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • Semiconductor piezoresistive type vibration sensor was fabricated by using semiconductor process and micromachining technology. To measure the micro electromagnetic force between coil and magnet, fabricated vibration sensor was used. Toapply micro electromagnetic force produced from the micro exciter, small-sized NdFeB permanent magnet was attached on the mass of the fabricated vibration sensor. The measured electromagnetic force are about 5~180dyne when the applied sinusoidal current of 1KHz in the range of 1.5~8mA. The measurement of micro electromagnetic forcewas performed by changing the distance between coil and magnet. Output characteristics of micro electromagnetic force according to the applied coil current were linear. Furthermore, output results were used to get the transfer constant that is important to decide the efficiency and the performance of the coil and magnet.

  • PDF

Finite Element Analysis of Powdered Magnet Sinter-Forging Processes Considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 소결단조 성형공정의 유한요소 해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.478-484
    • /
    • 2001
  • Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of magnet powder. This process claims that it can accomplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses a deformable copper tube for densification of magnet powder. In this paper, simulation has been carried out for tile Tube Process in a closed die considering the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an important role in the stage of preform design.

  • PDF

Effect of Cu/Al powder mixing on Dy diffusion in Nd-Fe-B sintered magnets treated with a grain boundary diffusion process (입계확산처리된 Nd-Fe-B 소결자석에서 Dy의 확산에 미치는 Cu와 Al 분말의 혼합 효과)

  • Lee, Min Woo;Jang, Tae Suk
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.432-436
    • /
    • 2016
  • We investigate the microstructural and magnetic property changes of $DyH_2$, $Cu+DyH_2$, and $Al+DyH_2$ diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusion-treated magnets increases with increasing heat treatment temperature except at $910^{\circ}C$, where it decreases slightly. Moreover, at $880^{\circ}C$, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed $DyH_2$-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only $DyH_2$. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of $790-880^{\circ}C$. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed $DyH_2$, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic $(Nd,\;Dy)_2Fe_{14}B$ phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.

Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process (가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어)

  • Cho, J.Y.;Park, S.M.;Hussain, J.;Song, M.S.;Kim, T.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

EFFECT OF TEMPERATURE ON THE PLASTIC DEFORMABILITY OF GAS ATOMIZED NdFeB ANISOTROPIC MAGNETS

  • JU-YOUNG CHO;YONG-HO-CHOA;SUN-WOO-NAM;RASHEED MOHAMMAD ZARAR;TAEK-SOO KIM
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1293-1296
    • /
    • 2020
  • NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Basic Study on the Production of Nd-Fe-B System Rare Earth Anisotropic bonded Magnet Materials by the R-D & HDDR Process(I) (R-D & HDDR Process에 의한 Nd-Fe-B계 희토류 이방성 본드자석재료의 제조에 관한 기초연구 (I))

  • Jo, Seon-Mi;Son, Chang-Bin;Jo, Tong-Rae
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.609-614
    • /
    • 2001
  • This study was carried out to obtain a basic data on the production of the Nd-Fe-B system rare earth anisotropic bonded magnet by R-D & HDDR process. The reduction reaction of Nd$_2$O$_3$by metallic Ca and the diffusion reaction of Nd into Fe-B alloy powder were investigated for the production the Nd-Fe-B alloy powder. We concluded that a proper quantity of metallic Ca was about 1.3 times of theoretical equivalent from the yields of Nd and B after the R-D reaction at 100$0^{\circ}C$ for 1h. In the XRD analysis the diffusion reaction of Nd into the center of Fe-B alloy powder for the completed homogenization was required through about 45min at 110$0^{\circ}C$ for the R-D reaction, and also the maximum efficiency on the yield of Nd was obtained with such a condition. Residual Ca and oxygen contents of the final powder sample after washing were detected in 0.17wt% and 0.42wt% by ICP and oxygen analyzer, respectively.

  • PDF

Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching (NdFeB계 영구자서 산화배소 스크랩의 초산침출에 의한 네오디뮴 회수)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.43-48
    • /
    • 2004
  • For the separation of neodymium from NdFeB permanent magnet scrap, the scrap was roasted for oxidizing, and leached with acetic acid followed by fractional crystallization for selective separation. From the analysis results of the leached solution, the optimum condition for the recovery of neodymium was found that leaching temperature, leaching time and pulp density are 80$^{\circ}C$, 3 hours, and 35%, respectively. At this optimum condition, more than 90% of neodymium could be recovered. Concentration of neodymium acetate in acetic acid. The optimum condition for the recovery of neodymium acetate crystal from the leached solution was that the initial leaching solution was evaporated until the remaining volume was about 1/5 of the initial volume. At this condition, 67.5% of neodymium was recovered from the leached solution. The neodymium remaining in the concentrated solution was recovered by reacting it with oxalic acid.

A Study on Removing the Magnetic Impurity in a Power Plant Line (발전소 배관 내부유체의 자성 이물질 제거에 관한 연구)

  • Choi, Yoon-Hwan;Kim, Oh-Kuen;Suh, Yong-Kweon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.45-49
    • /
    • 2003
  • This work focuses on eliminating tiny particles from the coolant in a nuclear pipe line by using a permanent magnet on the exterior surface of the pipe. This method have some merits compared with the currently applied methods and is expected to be applied to most of the pipe lines in the nuclear plant. For instance in this method, a ring is attacked to the exterior surface of the pipe, so that it does not affect the inflows directly. Further, the cost needed in the initial build-up of the facility is low.