Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.6.432

Effect of Cu/Al powder mixing on Dy diffusion in Nd-Fe-B sintered magnets treated with a grain boundary diffusion process  

Lee, Min Woo (Department of Advanced Materials Engineering, Sunmoon University)
Jang, Tae Suk (Department of Advanced Materials Engineering, Sunmoon University)
Publication Information
Journal of Powder Materials / v.23, no.6, 2016 , pp. 432-436 More about this Journal
Abstract
We investigate the microstructural and magnetic property changes of $DyH_2$, $Cu+DyH_2$, and $Al+DyH_2$ diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusion-treated magnets increases with increasing heat treatment temperature except at $910^{\circ}C$, where it decreases slightly. Moreover, at $880^{\circ}C$, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed $DyH_2$-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only $DyH_2$. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of $790-880^{\circ}C$. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed $DyH_2$, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic $(Nd,\;Dy)_2Fe_{14}B$ phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.
Keywords
Nd-Fe-B sintered magnet; Grain boundary diffusion process; Dy diffusion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. W. Lee, D. R. Dhakal, T. H. Kim, S. R. Lee, H. J. Kim and T. S. Jang: Arch. Metall. Mater., 60 (2015) 1407.   DOI
2 Y. Kaneko, F. Kuniyoshi and N. Ishigaki: J. Alloys Compd., 408 (2006) 1344.
3 H. Nakamura, K. Hirota, M. Shimao, T. Minowa and M. Honshima: IEEE Trans. Magn., 41 (2005) 3844.   DOI
4 K. Hirota, H. Nakamura, T. Minowa and M. Honshima: IEEE Trans. Magn., 42 (2006) 2909.   DOI
5 D. S. Li, M. Nishimoto, S. Suzuki, K. Nishiyama, M. Itoh and K. Machida: IOP CONF. SER. MATER. SCI. ENG., 1 (2009) 012020.
6 M. Komuro, Y. Satsu and H. Suzuki: IEEE Trans. Magn., 45 (2010) 3831.
7 S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa and H. Yamauchi: J. Appl. Phys., 59 (1986) 873.   DOI
8 D. R. Lide: CRC Handbook of Chemistry and Physics, (Ed) CRC Pres, USA (2000) 1999.
9 T. N. Rezykhina and T. F. Sioeva: J. Chem. Thermodyn., 11 (1979) 1095.   DOI
10 B. E. Davies, R. S. Mottram and I. R. Harris: J. Mater. Chem. Phys., 64 (2001) 272.
11 D. W. Park, T. H. Kim, S. R. Lee, D. H. Kim and T. S. Jang: J. Appl. Phys., 107 (2010) 09A737.   DOI
12 K. H. J. Buschow: J. Mater. Sci. Res., 1 (1986) 1.   DOI
13 J. Fidler and J. Bernardi: J. Appl. Phys., 70 (1991) 6456   DOI
14 W.F. Li, T. Ohkubo, K. Hono and M. Sagawa: J. Magn. Magn. Mater., 321 (2009) 1100.   DOI
15 S. Namkung, M. W. Lee, I. S. Cho, Y. D. Park, T. H. Lim, S. R. Lee, T. S. Jang: J. Korean Powder Metall. Inst., 18 (2011) 29.   DOI