• Title/Summary/Keyword: NbC

Search Result 1,381, Processing Time 0.028 seconds

Comparison of structural and electrical properties of PMN-PT/LSCO thin films deposited on different substrates by pulsed laser deposition

  • Jiang, Juan;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.214-214
    • /
    • 2010
  • The 0.65Pb($Mg_{1/3}Nb_{2/3})O_3-0.35PbTiO_3$ (PMN-PT) thin films with $La_{0.5}Sr_{0.5}CoO_{3-\delta}$ (LSCO) bottom electrodes were grown on $CeO_2$/YSZ/Si(001), Pt/$TiO_2$/Si and $SrTiO_3$ (STO) substrates using conventional pulsed laser deposition (PLD) at a substrate temperature of $550^{\circ}C$. Since generally the crystallographic orientation of the bottom electrode induces the orientation of the films deposited on it, it allows us to observe the influence of the PMN-PT film orientation on the electrical properties. Phi scan done on PMN-PT/LSCO thin films shows epitaxial behavior of the films grown on sto substrates and $CeO_2$/YSZ buffered Si(001) substrates, and (110) texture on Pt/$TiO_2$/Si substrates. Polarization-electricfield (P-E) measurement shows good hysteresis behavior of PMN-PT films with remnant polarization of 18.2, 8.8, and $4.4{\mu}C/cm^2$ on $CeO_2$/YSZ/Si, Pt/TiO2/Si and STO substrates respectively.

  • PDF

Crystallization and Electrical Properties of SBN60 Thin Films Prepared by Ion Beam Sputter Deposition

  • Jang, Jae-Hoon;Jeong, Seong-Won;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.10-13
    • /
    • 2005
  • $Sr_{0.6}Ba_{0.4}Nb_{2}O_{6}$, hereafter SBN60, thin films of 300 nm thickness were deposited using ion beam sputtering technique, in which sintered ceramic target of the same composition was utilized and the $Ar:O_{2}$ gas ratio was controlled during deposition onto $Pt(100)/TiO_{2}/SiO_{2}/Si$ substrate. Crystallization and orientation behavior as well as electrical properties of the films were examined after annealing treatment at $650{\sim}800{\cric}C$. It was found that the film orientation was dependent upon $Ar:O_{2}$ratio, in which strong (00l) orientation was developed when the gas ratio was about 1:4 at $4.3{\times}10^{-4}$ torr. Typical remanent polarization (2Pr), the coercive field (Ec) and the dielectric constant of Pt/SBN60/Pt thin film capacitor were approximately $10{\mu}C/cm^{2}$, 60 kV/cm, and 615, respectively.

Piezoelectric Characteristics of PMW-PNN-PZT Ceramics according to Post-Annealing Process (Post annealing에 따른 PMW-PNN-PZT 세라믹스의 압전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Park, Chang-Yub;Lee, Hyung-Gyu;Kang, Hyung-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.212-213
    • /
    • 2005
  • In this study, in order to develop low temperature sintering piezoelectric actuator, $Pb_{0.985}Bi_{0.01}(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.13}(Zr_{0.50},Ti_{0.50})_{0.84}$ (PMW-PNN-PZT) ceramic systems were fabricated using $CaCO_3-Li_2CO_3$, sintering aid through a post-annealing process. The sinterability of PMW-PNN-PZT ceranics was remarkably enhanced by liquid phase sintering of $CaCO_3$ and $Li_2CO_3$. But, it was confimed form the X-ray diffraction pattern that the secondary phase along grain boundaries, deteriorated the piezoelectric properties. The secondary phase along grain boundaries was significantly removed by annealing after sintering. The 0.2wt% $Li_2CO_3$-0.25wt% $CaCO_3$-added PMW-PNN-PZT ceramics post-annealed at 900$^{\circ}C$ for 90min exhibited the excellent electromechanical coupling factor($k_p$) of 63.3% and piezoelectric constant($d_{33}$) of 452pC/N, respectively, for multilayer piezoelectricactuatorapplication.

  • PDF

Optimization of the Production of Fibrinolytic Enzyme from Bacillus firmus NA-1 in Fermented Soybeans

  • Seo, Ji-Hyun;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.14-20
    • /
    • 2004
  • Bacillus strains capable of producing fibrinolytic enzyme were isolated from traditional fermented Korean soybean paste and Japanese fermented soybean (Natto). Among the 16 strains, a selected Bacillus sp. was identified as bacillus firmus, with 80.7% homology, by API kit analysis. Seed starter or B. firmus NA-1 was prepared with 5% soymilk prepared from micronized soybean powder. To produce fibrinolytic enzyme by B. firmus NA-1 the liquid culture was performed with NB broth (pH 7.0) fortified with 1% galactose, 0.1% tryptone, and 0.5% $K_2$HPO$_4$, by shaking with 180 rpm at 37$^{\circ}C$. Fibrinolytic enzyme activity reached the highest value at 7.8 unit/mL (plasmin unit) after fermentation for 72 hr. The crude fibrinolytic enzyme showed higher relative activity in the range of pH 7.0∼9.0. The activity of crude fibrinolytic enzyme was well maintained even after concentration by the vacuum evaporation at 5$0^{\circ}C$ for 1 hr.

Effect of Heat Treatment on the Microstructures of Inconel 718 Superalloy (INCONEL 718 초내열 합금의 열처리에 따른 미세조직 변화)

  • Choi, J.H.;Lee, K.R.;Jo, C.Y.;Kim, I.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • Microstructural evolution of wrought Inconel 718 superalloy with different heat treatment conditions was studied. Heat treatment was performed via conventional(CHT), modified(MHT), Merrick(MeHT) and modified Merrick (MMeHT) methods. The size of ${\gamma}^{\prime}$ and ${\gamma}^{\prime\prime}$ precipitates which are principal strengthening phases in Inconel 718 superalloy increase in order of CHT, MHT, MeHT. For the case of MMeHT, a coexistence of fine ${\gamma}^{\prime\prime}$ precipitate and very coarse particles due to exess growth of ${\gamma}^{\prime\prime}$, which is called bimodal distribution, was observed. CHT gave the finest grain size. (Ti, Nb)C carbide and needle-like ${\delta}$ phase were formed together at grain boundaries for CHT, and were formed both inside and at boundaries of grains for MHT, MeHT and MMeHT. Morphology of partially serrated grain boundaries was developed in all heat treatment conditions except CHT.

  • PDF

The Piezoelectric and Dielectric Properties of PZT-PMN Ceramics (PZT-PMN 압전 세라믹의 압전 및 유전 특성)

  • Lee, J.S.;Lee, Y.H.;Hong, J.K.;Jeong, S.H.;Chai, H.I.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.131-134
    • /
    • 2001
  • In this paper, the piezoelectric and dielectric properties as a function of x and a in $aPbZr_xTi_{1-x}O_3-(1-a)Pb(Mn_{1/3}Nb_{2/3})O_3$ + ywt%MgO is investigated. As a results, when a is 0.95 and x is 0.505, electromechanical coupling factor$(k_p)$, permittivity${\varepsilon}_33^T/{\varepsilon}_0$, piezoelectric strain constant$(d_{33})$ and mechanical quality factor$(Q_m)$ are 58 %, 1520, 272 pC/N and 1550, respectively. From XRD analysis, when x is 0.505, it is MPB which present rhombohedral and tetragonal phase in same quantity. Also, From SEM observation, when sintering temperature is $1150^{\circ}C$, grain size is about $2\;{\mu}m$. As a results added MgO dopant in the ternary piezoelectric ceramic, when MgO content is 0.1 wt%, $k_p$ increases to 63[%].

  • PDF

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

Magnetic Properties of Cr-doped LiNbO3 by Using the Projection Operator Technique

  • Park, Jung-Il;Lee, Hyeong-Rag;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • The electron spin resonance lineshape (ESRLS) function for the electron spin resonance linewidth (ESRLW) of $Cr^{3+}$ (S = 3/2) in ferroelectric lithium niobate single crystals doped with 0.05 wt% of Cr, is obtained by using the projection operator technique (POT), developed by Argyres and Sigel. The ESRLS function is calculated to be axially symmetric about the c - axis and analyzed by using the spin Hamiltonian $H_{SP}={\mu}_B(B{\cdot}{^\leftrightarrow_{g}}{\cdot}S)+S{\cdot}{^\leftrightarrow_{D}}{\cdot}S$ with the parameters g = 1.972 and D = $0.395\;cm^{-1}$. In the ca plane, the linewidths show a strong angular dependence, whereas in the ab plane, they are independent of the angle. This result implies that the resonance center has an axial symmetry along the c - axis. Further, from the temperature dependence of the linewidths that is shown, it can be seen that the linewidths increase as the temperature increases, at a frequency of v = 9.27GHz. This result implies that the scattering effect increases with increasing temperature. Thus, the POT is considered to be more convenient to explain the scattering mechanism as in the case of other optical resonant systems.

Effects of Alloying Elements on the Characteristics of Microstructure and High Temperature Oxidation of Cast Austenitic Stainless Steel (오스테나이트 스테인리스 주강의 미세 조직 및 고온 산화 특성에 미치는 합금원소의 영향)

  • Lee, In-Sung;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, Jung-Suk;Ko, Young-Sang;Kim, Jong-Myoung
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.179-186
    • /
    • 2010
  • To elucidate the effects of alloying elements on the characteristics of microstructure and high temperature oxidation of cast austenitic stainless steel, a thermodynamic calculation, a cyclic oxidation test, a X-ray diffraction, a scanning electron microscopy-back scattered electron, a electron probe microanalysis were conducted. The thermodynamic calculation for the effect of vanadium (V) addition on the formation of various precipitates leads to a decrease of chromium (Cr)-rich $M_{23}C_6$ carbides due to the formation of M (C, N) carbo-nitrides containing V and / or niobium (Nb). The V added alloy increased the resistance to high temperature oxidation due to a decrease of Cr-depleted zone deteriorating the oxidation resistance and due to the V-enriched oxide layer formed in inner oxide layer blocking the outward transport of cations.

Microstructure and Piezoelectric Properties of PMW-PNN-PZT Ceramics with Bismuth Substitution (PMW-PNN-PZT 세라믹스의 Bismuth 치환에 따른 미세구조 및 압전 특성)

  • Kim, Yong-Jin;Yoo, Ju-Hyun;Shin, Dong-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.332-336
    • /
    • 2016
  • In this study, in order to develop the composition ceramics for ultrasonic sensor with high $d_{33}*g_{33}$, $Pb_{1-3x/2}Bix(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3$(PMW-PNN-PZT) system ceramics were prepared using CuO as sintering aids. And then, their microstructure, piezoelectric and dielectric characteristics were systemetically investigated with bismuth substitution. The PMW-PNN-PZT ceramic specimens could be sintered at sintering temperature of $940^{\circ}C$ by adding sintering aids. At x=0.015 specimen, the density, electromechanical coupling factor($k_p$), dielectric constant, piezoelectric constant($d_{33}$) and piezoelectric figure of merit($d_{33}*g_{33}$) indicated the optimal properties of $7.90g/cm^3$, 0.67, 2,511, 628 pC/N, and $17.7pm^2/N$, respectively, for duplex ultrasonic sensor application.