• Title/Summary/Keyword: NbC

Search Result 1,380, Processing Time 0.027 seconds

Structure and Elastic Properties of (Nb1-xTax)C, (Nb1-xHfx)C, Ultra-High Temperature Solid Solution Ceramics using the First Principles Calculation (제1원리계산을 이용한 (Nb1-xTax)C, (Nb1-xHfx)C 초고온 세라믹 고용체의 구조 및 탄성특성)

  • Kim, Myungjae;Kim, Jiwoo;Kim, Jiwoong;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.682-689
    • /
    • 2021
  • NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.

Interaction of Co/Nb Bilayer with $SiO_2$ Substrate ($SiO_2$와 Co/Nb 이중층 구조의 상호반응)

  • Gwon, Yeong-Jae;Lee, Jong-Mu;Bae, Dae-Rok;Gang, Ho-Gyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.956-960
    • /
    • 1998
  • The interfacial reaction between the CoINb bilayer and the $SiO_2$ substrate in the temperature range of $330^{\circ}C$-$800^{\circ}C$ in a vacuum has been investigated by X-ray photoelectron spectroscopy, glancing angle XRD, Auger Electron Spectroscopy and Atomic force microscopy. The Co and Nb were actively interdiffused at $600^{\circ}C$, and the layer inversion completed at $700^{\circ}C$. NbO was formed by interfacial reaction between the Nb interlayer and the $SiO_2$ substrate, while $Nb_20_5$ was formed on the surface by reaction of Nb with oxygen in the ambients. Free Si atoms obtained by the reaction between Nb and $SiO_2$ formed silicides like CoSi and $Nb_5Si_3$ by reacting with Co and Nb remnants. The sheet resistance of the Co/Nb bilayer increased substantially after annealing at $800^{\circ}C$. which is due to the agglomeration of the Co layer to reduce its surface energy.

  • PDF

Untersuchungen zur Kohlenstoffloslichkeit in Molybdan und Molybdan-Va-Metall-Legierungen

  • Klaus Schulze;Kim, Hyung-Jin;Hermann Jehn
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.3
    • /
    • pp.108-123
    • /
    • 1983
  • 순수 Mo와 Mo-Nb, Mo-Ta($\leq$10 at% Nb. Ta)합금을 1,500-2,06$0^{\circ}C$ 범위에서 탄소의 고용도를 연구하였다. 특수한 침탄방법으로 C2H2를 시편에 침탄한후 열처리하여 부분적으로 석출하거나 완전석출에 관계없는 화학적 분석방법으로 행하였다. 순수 Mo에서 최대탄소 고용도는 logCCmax = 7.02-9,490/T이다. Nb, Ta를 미량첨가하여 탄소의 최대 고용도는 Arrhenius 식을 적용할 수 없다. Nb-, Ta- 농도와 온도에 따라 Mo2C와 Nb-,Ta-를 함유한 여러 가지 탄화물상을 만들거나 $\alpha$고용체와 Mo가 포함된 NbC, TaC와 평형상태를 나타나기 때문이다. 실험온도 범위에서 Nb, Ta를 첨가량을 증가하면 탄화물 내부에 NbC, TaC로 석출된다. 고온에 용해된 a-고용체는 150-200 oK/Min으로 냉각하면 석출물은 결정입계나 결정내부에 나타난다. 순수 Mo에 Nb, Ta를 첨가하여도 경도, 파괴실험에서와 같이 인장강도는 크게 증가하지 않는다.

  • PDF

Ductile-Brittle Transition Property of Sintered TiC-Nb Composites (TiC-Nb 소결 복합재료의 연성-취성 천이 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.13-18
    • /
    • 2014
  • In order to clarify the effect of Nb addition on the ductile-brittle transition property of sintered TiC, TiC-10 mol% Nb composites were researched using a three-point bending test at temperatures from room temperature to 2020 K, and the fracture surface was observed by scanning electron microscopy. It was found that the Nb addition decreases the ductile-brittle transition temperature of sintered TiC by 300 K and increases the ductility. The room temperature bending strength was maintained at up to 1800 K, but drastically dropped at higher temperatures in pure TiC. The strength increased moderately to a value of 320MPa at 1600 K in TiC-10 mol% Nb composites, which is 40% of the room temperature strength. Pores were observed in both the grains and the grain boundaries. It can be seen that, as Nb was added, the size of the grain decreased. The ductile-brittle transition temperature in TiC-10 mol% Nb composites was determined to be 1550 K. Above 1970 K, yieldpoint behavior was observed. When the grain boundary and cleavage strengths exceed the yield strength, plastic deformation is observed at about the same stress level in bending as in compression. The effect of Nb addition is discussed from the viewpoint of ability for plastic deformation.

Precipitation and Precipitate Coarsening Behavior According to Nb Addition in the Weld HAZ of a Ti-containing Steel (Nb의 첨가에 따른 Ti 첨가 저합금강 용접열영향부에서의 석출물 거동 변화)

  • Moon, Joon-Oh;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 2008
  • The effect of Nb addition on the precipitation and precipitate coarsening behavior was investigated in Ti and Ti + Nb steel weld HAZ. A dilatometer equipped with a He-quenching system was used to simulate the weld thermal cycle. Compared to $TiC_yN_{1-y}$ precipitate in a Ti containing steel, $Ti_xNb_{1-x}C_yN_{1-y}$ complex particle with addition of Nb is precipitated in a Ti + Nb containing steel. Meanwhile, precipitate coarsening occurred more easily in Ti + Nb steel, which may be because the high temperature stability of $Ti_xNb_{1-x}C_yN_{1-y}$ complex particle is deteriorated by the Nb addition.

Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.5-7
    • /
    • 2016
  • We present an experimental investigation of the superconducting transition temperatures, $T_c$, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, $d_{NbN}{\approx}9.3nm$ and $d_{NbN}{\approx}10nm$, and Nb/FeN with Nb thickness $d_{Nb}{\approx}15nm$. $T_c$ drops sharply with increasing thickness of the ferromagnetic layer, $d_{FeN}$, before maximal suppression of superconductivity at $d_{FeN}{\approx}6.3nm$ for $d_{NbN}{\approx}10nm$ and at $d_{FeN}{\approx}2.5nm$ for $d_{Nb}{\approx}15nm$, respectively. After shallow minimum of $T_c$, a weak $T_c$ oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method

  • Kim, Jongmin;Jung, Young Hee;Kwak, Jun Young;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.94-101
    • /
    • 2019
  • Nb, Mo-doped and Nb/Mo-codoped $VO_2(M)$ nanocrystallites with various doping levels were synthesized for the first time by a hydrothermal and post thermal transformation method. The reversible phase transition characteristics of those doped $VO_2(M)$ was comparatively investigated. Nb-doping of $VO_2(M)$ by this method resulted in a very efficient lowering of the transition temperature ($T_c$) with a rate of $-16.7^{\circ}C/at.%$ that is comparable to W-doping, while Mo-doping did not give a serious reduction of $T_c$ with only a rate of $-5.1^{\circ}C/at.%$. Nb/Mo-codoping gave a similar result to Nb-doping without a noticeable difference. The thin films of Nb-doped and Nb/Mo-codoped $VO_2(M)$ with a thickness of ca. 120 nm were prepared by a wet-coating of the nanoparticle-dispersed solutions. Those films showed a good thermochromic modulation of near infrared radiation with 30-35% for Nb-doped $VO_2(M)$ and 37-40% for Nb/Mo-codoped ones. Nb/Mo-codoped $VO_2(M)$ film showed slightly enhanced thermochromic performance compared with Nb-doped $VO_2(M)$ film.

Analysis on Properties of $TiO_2-Nb_2O_5$ Sol ($TiO_2-Nb_2O_5$ 솔의 물성에 대한 분석)

  • You, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.349-353
    • /
    • 2006
  • [ $TiO_2-Nb_2O_5$ ] sol was prepared using sol-gel method. Crystalline properties of gel powder changed from rutile phase to anatase phase with increasing $Nb_2O_5$ additives at $800^{\circ}C$, while they retained rutile phase regardless of $Nb_2O_5$ additives at $900^{\circ}C,\;1,000^{\circ}C$. They retained amorphous phase from $50^{\circ}C\;to\;400^{\circ}C$, retained anatase phase from $500^{\circ}C\;to\;600^{\circ}C$ and had rutile phase over $700^{\circ}C$ at 1mole% $Nb_2O_5$ additive. After $TiO_2-Nb_2O_5$ sol retained low viscosity with normal chain structure for a long time, its viscosity increased fast with network structure. DTA properties of gel powder had endothermic reaction due to evaporation of propanol and water about $78^{\circ}C$, had exothermic reaction due to propanol combustion about $290^{\circ}C$ and had exothermic reaction due to changing of $TiO_2$ phase about $640^{\circ}C$.

Cougruent Compositon of $LiNbO_3$ Crystal ($LiNbO_3$ 단결정의 Congruent 조성에 관한 연구)

  • 이성국;이상학;윤의박
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.71-78
    • /
    • 1991
  • The congruent composition of $LiNbO_3$ was determined by measuring Curie temperature($T_c$) of crystals and residual melt grown from the range 48.45 to 48.60mole%$Li_2O$ melts. The $T_c$ of $LiNbO_3$ varied with compositon largely. The variation of $T_c$ with composition was found to follow $T_c=l0.4184c^2-962. 996C + 23342$, where C is mole % LizO. DSC-1500 was used to measure $T_c$. Distribution coefficients for $LiNbO_3$$ LiNbO_3$ contains 48.52mole$Li_2O$ and has a measured Tc of $1145{\pm}^{\circ}C$

  • PDF

Oxygen Chemisorption of NbC(111) Surface Studied by High-Resolution Electron Energy Loss and Ultraviolet Photoelectron Spectroscopy (고분해능 전자에너지손실 및 자외선광전자 분광법을 이용한 NbC(111)면의 산소흡착 연구)

  • Hwang, Yeon;Park, Soon-Ja;Aizawa, Takashi;Hayami, Wataru;Otani, Shigeki;Ishizawa, Yoshio
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 1992
  • Oxygen adsorption on the single crystal NbC(111) surface was studied by high-resolution electron energy loss and ultraviolet photoelectron spectroscopy. On the NbC(111) surface, oxygen molecules as well as oxygen atoms were adsorbed. Oxygen atoms were located at the 3-fold hollow site of the NbC(111) surface with the frequency of 548c$m^{-1}$. It was found that oxygen molecules had vibrational frequency of 968c$m^{-1}$which was much lower than that of the free oxygen molecule. Also the work function of the NbC(111) surface has increased by adsorption of oxygen molecule. These suggest electron tranfer from the NbC(111) substrate to the 2p${pi}_g$ substrate of the oxygen molecule.

  • PDF