• Title/Summary/Keyword: Nb silicide

Search Result 10, Processing Time 0.023 seconds

Fabrication and Operating Properties of Nb Silicide-coated Si-tip Field Emitter Arrays (니오비움 실리사이드가 코팅된 실리콘 팁 전계 방출 소자의 제조 및 동작 특성)

  • Ju, Byeong-Kwon;Park, Jae-Seok;Lee, Sangjo;Kim, Hoon;Lee, Yun-Hi;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.521-524
    • /
    • 1999
  • Nb silicide was formed on the Si micro-tip arrays in order to improve field emission properties of Si-tip field emitter array. After silicidization of the tips, the etch-back process, by which gate insulator, gate electrode and photoresist were deposited sequentially and gate holes were defined by removing gradually the photoresist by $O_2$ plasma from the surface, was applied. Si nitride film was used as a protective layer in order to prevent oxygen from diffusion into Nb silicide layer and it was identified that the NbSi2 was formed through annealing in $N_2$ ambient at $1100^{\circ}C$ for 1 hour. By the Nb silicide coating on Si tips, the turn-on voltage was decreased from 52.1 V to 32.3 V and average current fluctuation for 1 hour was also reduced from 5% to 2%. Also, the fabricated Nb silicide-coated Si tip FEA emitted electrons toward the phosphor and light emission was obtained at the gate voltage of 40~50 V.

  • PDF

Development and Oxidation Resistance of B-doped Silicide Coatings on Nb-based Alloy

  • Li, Xiaoxia;Zhou, Chungen
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.233-236
    • /
    • 2008
  • Halide-activated pack cementation was utilized to deposit B-doped silicide coating. The pack powders were consisted of $3Wt.c/oNH_4Cl$, 7Wt.c/oSi, $90Wt.c/oAl_2O_3+TiB_2$. B-doped silicide coating was consisted of two layers, an outer layer of $NbSi_2$ and an inner layer of $Nb_5Si_3$. Isothermal oxidation resistance of B-doped silicide coating was tested at $1250^{\circ}C$ in static air. B-doped silicide coating had excellent oxidation resistance, because continuous $SiO_2$ scale which serves as obstacle of oxygen diffusion was formed after oxidation.

A Study on Microstructure and High Temperature Compression Characteristics of Silicide Eutectics (실리사이드 복합 공정합금의 미세조직 및 고온 압축특성)

  • Lee, Je-Hyun;Cho, Yong-Seong;Kang, Soo-Hyeon;Park, Jang-Sik;Kim, Sang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 1997
  • There has been a considerable interest to develop the silicide alloys as high temperature structural materials because of their excellent high temperature stability and strength, however, their lack of room temperature ductility and toughness was a main obstacle for the application. In order to improve ductility while maintaining good high temperature properties, possible refractory metal-silicide eutectic alloys composed of fine two phases were prepared by VAR(Vacuum Arc Remelting). Three silicide alloys, $Nb-Nb_3Si$, $Ti-Ti_5Si_3$, $V-V_3Si$, were selected as prospecting silicide eutectics and those high temperature characteristics were evaluated by high temperature compression test.

  • PDF

Employing Al Etch Stop Layer for Nb-based SNS Josephson Junction Fabrication Process (Al 식각정지층을 이용한 Nb-based SNS 조셉슨 접합의 제조공정)

  • Choi, J.S.;Park, J.H.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.114-117
    • /
    • 2011
  • We report our efforts on the development of Nb-based non-hysteretic Josephson junction fabrication process for quantu device applications. By adopting and modifying the existing Nb-aluminum oxide tunnel junction process, we develop a process for non-hysteretic Josephson junction circuits using metal-silicide as metallic barrier material. We use sputter deposition of Nb and $MoSi_2$, PECVD deposition of silicon oxide as insulator material, and ICP-RIE for metal and oxide etch. The advantage of the metal-silicide barrier in the Nb junction process is that it can be etched in $SF_6$ RIE together with Nb electrode. In order to define a junction area precisely and uniformly, end-point detection for the RIE process is critical. In this paper, we employed thin Al layer for the etch stop, and optimized the etch condition. We have successfully demonstrated that the etch stop properties of the inserted Al layer give a uniform etch profile and a precise thickness control of the base electrode in Nb trilayer junctions.

Silicidation and Thermal Stability of the So/refreactory Metal Bilayer on the Doped Polycrystalline Si Substrate (Co/내열금속/다결정 Si 구조의 실리사이드화와 열적안정성)

  • 권영재;이종무
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.604-610
    • /
    • 1999
  • Silicide layer structures and morphology degradation of the surface and interface of the silicide layers for he Co/refractory metal bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The CoSi-CoSi2 phase transition temperature is lower an morphology degradation of the silcide layer occurs more severely for the Co/refractorymetal bilayer on the P-doped polycrystalline Si substrate than on the single Si substrate. Also the final layer structure and the morphology of the films after silicidation annealing was found to depend strongly upon the interlayer metal. The layer structure after silicidation annealing of Co/Hf/doped-poly Si is Co-Hf alloy/polycrystalline CoSi2/poly Si substrate while that of Co/Nb is polycrystalline CoSi2/NbSi2/polycrystalline CoSi2/poly Si.

  • PDF

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

Silicidation of Co/M/(100) Si bilayer Structures (Co/내열금속/(100) Si 이중층 구조의 실리사이드화)

  • 권영재;이종무;배대록;강호규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.505-511
    • /
    • 1998
  • The silicide formation mechanisms of Co/Hf and Co/Nb bilayer on (100) Si have been investigated. We ob-served that crystallographic orientationso f the 500$^{\circ}C$ formed cobalt silcides were different each other with the varying intermediate layers. Epitaxial and non-epitaxial CoSi2 formed simultaneously in Co/Hf/(100Si. While only non-epitaxial CoSi2 formed in Co/Nb/(100) Si. The reason why the crystallographic orientation of CpSi2 is different for those two systems seemed to be relate to the formation and decomposition of stable reaction barriers at high temperature. The stable reaction barrier formed at high temperature could control the uniform diffusion of Co atoms which enables epitaxial growth of CoSi2.

  • PDF

Thermal Stability of the Cu/Co-Nb Multilayer Silicide Structure (Cu와 Co-Nb 이중층 실리사이드 계면의 열적안정성)

  • Lee, Jong-Mu;Gwon, Yeong-Jae;Kim, Yeong-Uk;Lee, Su-Cheon
    • Korean Journal of Materials Research
    • /
    • v.7 no.7
    • /
    • pp.587-591
    • /
    • 1997
  • RBS와 XRD를 이용하여 C o-Nb이중층 실리사이드와 구리 배선층간의 열적안정성에 관하여 조사하였다. Cu$_{3}$Si등의 구리 실리사이드는 열처리시 40$0^{\circ}C$정도에서 처음 형성되기 시작하였는데, 이 때 형성되는 구리 실리사이드는 기판의 상부에 존재하던 준안정한 CoSi의 분해시에 발생한 Si원자와의 반응에 의한 것이다. 한편, $600^{\circ}C$에서의 열처리 후에는 CoSi$_{2}$층을 확산.통과한 Cu원자와 기판 Si와의 반응에 의하여 CoSi$_{2}$/Si계면에도 구리 실리사이드가 성장하였는데, 이렇게 구리 실리사이드가 CoSi$_{2}$/Si 계면에 형성되는 것은 Cu원자의 확산속도가 여러 중간층에서 Si 원자의 확산속도 보다 더 빠르기 때문이다. 열처리 결과 최종적으로 얻어진 층구조는 CuNbO$_{3}$/Cu$_{3}$Si/Co-Nb합금층/Nb$_{2}$O$_{5}$CoSi$_{2}$/Cu$_{3}$Si/Si이었다. 여기서 상부에 형성된 CuNbO$_{3}$는 Cu원자가 Nb$_{2}$O$_{5}$및 Co-Nb합금층과 반응하여 기지조직의 입계에 석출되어 형성된 것이다.

  • PDF

Simultaneous Synthesis and Densification of NiSi2 and NiSi2-20vol.%Nb Composite by Field-Activated and Pressure-Assisted Combustion (가압통전 활성연소에 의한 치밀한 NiSi2와 NiSi2-20vol.%Nb 복합재료 제조)

  • Kim, H.C.;Shon, I.J.;Park, C.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • A method to simultaneously synthesize and consolidate the silicide $NiSi_2$ and the composite $NiSi_2$-20vol.%Nb from powders of Ni, Si, and Nb was investigated. Combustion synthesis was carried out under the combined effect of an electric field and mechanical pressure. The final density of the products increased nearly linearly with the applied pressure. Highly dense $NiSi_2$ and $NiSi_2$-20vol.%Nb with relative densities of up to 97% were produced under the simultaneous application of a 60MPa pressure and a 3000A current on the reactant powders. The respective Vickers microhardness values for these materials were 6.0 and 5.8 GPa. From indentation crack measurements, the fracture toughness values for $NiSi_2$ and $NiSi_2$-20vol.%Nb were calculated to be 3.3 and 4.7 $MPa{\cdot}m^{1/2}$, respectively.

  • PDF

Redistribution of Dopant by Silicidation Treatment in Co/Metal/Si (Co/metal/Si 이중층 구조의 실리사이드화 열처리에 따른 dopant의 재분포)

  • Lee, Jong-Mu;Gwon, Yeong-Jae;Lee, Su-Cheon;Gang, Ho-Gyu;Bae, Dae-Rok;Sin, Gwang-Su;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.189-194
    • /
    • 1998
  • The redistribution behavior of boron during Co silicidation annealing in the Co/metal/Si system was investigated using SIMS. Ti, Nb and Hf films were used as epitaxy promoting metal layers. After annealing treatment the boron peak height was about 1 order lowered in Co/Ti/Si and Co/Nb/Si systems but the relative peak position from the surface did not change. The distribution of boron was very similar to those of Ti and Nb, because of the strong affinities of boron with them. Also, the position of the main boron peak in the Co/Hf/Si system was almost the same as that of Hf, but the distribution feature of the Co/Hf/Si system somewhat differed from those of Co/Ti/Si and Co/Nb/Si systems. This implies that the affinity between B and Hf is weaker than those of B-Ti and B-Nb. Boron tends to be depleted at the silicidelsi interface while it tends to be piled-up at the Co-metal/Co silicide interface during silicidation annealing.

  • PDF