• Title/Summary/Keyword: Nb addition

Search Result 491, Processing Time 0.029 seconds

Piezoelectric Properties of 0.94(Na0.5K0.5)NbO3-0.06(Sr0.5Ca0.5)TiO3 with 0.1 MnO2 Addition at Varying Sintering Temperatures (소결 온도에 따른 0.94(Na0.5K0.5)NbO3-0.06(Sr0.5Ca0.5)TiO3-0.1 MnO2의 압전 특성)

  • Jung, Hye-Rin;Lee, Sung-Gap;Lee, Tae-Ho;Kim, Min-Ho;Jo, Ye-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.14-17
    • /
    • 2014
  • In this study, lead-free Piezoelectric $(Na_{0.47}K_{0.47}Sr_{0.03}Ca_{0.03})(Nb_{0.94}Ti_{0.06})O_3$-0.1 $MnO_2$ ceramics were fabricated using mixed oxide method and the effects of various sintering temperature on the structural and electrical properties were investigated. For the $(Na_{0.47}K_{0.47}Sr_{0.03}Ca_{0.03})(Nb_{0.94}Ti_{0.06})O_3$-0.1 $MnO_2$ (NKN-SCT-$MnO_2$) ceramics sintered at temperatures of $1,025{\sim}1,100^{\circ}C$. The results indicated that all specimens were perovskite single phase formation without any second phase. It has been shown that relative density is increased to increasing sintering temperature. When the sintered temperature at $1,075^{\circ}C$, highest sintered density and maximum value of $4.45g/cm^3$. Average grain size is increased to increasing sintering temperature. The electromechanical coupling factor, dielectric constant, dielectric loss, d33 and curie temperature at the sintering temperature $1,075^{\circ}C$ of NKN-SCT-$MnO_2$ specimens were 0.22, 511, 0.033, 103 and $380^{\circ}C$, respectively.

Cooperative Priority-based Resource Allocation Scheduling Scheme for D2D Communications Underlaying 5G Cellular Networks (5G 셀룰러 네트워크 하의 D2D통신을 위한 협력적 우선순위 기반의 자원할당 스케줄링)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.225-232
    • /
    • 2020
  • The underlaying communication scheme in 5G cellular network is a very promising resource sharing scheme, and it is an effective scheme for improving service performance of 5G and reducing communication load between a cellular link and a device to device (D2D) link. This paper proposes the algorithm to minimize the resource interference that occurs when performing 5G-based multi-class service on gNB(gNodeB) and the cooperative priority-based resource allocation scheduling scheme (CPRAS) to maximize 5G communication service according to the analyzed control conditions of interference. The proposed CPRAS optimizes communication resources for each device, and it optimizes resource allocation according to the service request required for 5G communication and the current state of the network. In addition, the proposed scheme provides a function to guarantee giga-class service by minimizing resource interference between a cellular link and a D2D link in gNB. The simulation results show that the proposed scheme is better system performance than the Pure cellular and Force cellular schemes. In particular, the higher the priority and the higher the cooperative relationship between UE(User Equipment), the proposed scheme shows the more effective control of the resource interference.

The PTCR Effect in Lead-free (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ Ceramics Doped with $Nb_2O_5$ ($Nb_2O_5$가 도핑된 (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ 무연 세라믹스의 PTCR 효과)

  • Jeong, Young-Hun;Park, Yong-Jun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.52-52
    • /
    • 2008
  • The positive temperature coefficient of resistivity (PTCR) effect in (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ doped with $Nb_2O_5$ was investigated. $(Bi_{1/2}K_{1/2})TiO_3$ (BKT) is more environment-friendly than $PbTiO_3$ in order to use in PTC thermistors. The incorporation of 1 mol% BKT to $BaTiO_3$ increased the Curie temperature (Tc) to $148^{\circ}C$. Doping of $Nb_2O_5$ to $Ba_{0.99}(Bi_{0.5}K_{0.5})_{0.01}TiO_3$ (BaBKT) ceramic has enhanced its PTCR effects. For the sample containing 0.025 mol% $Nb_2O_5$, it showed good PTCR properties; low resistivity at room temperature (${\rho}_r$) of 30 $\Omega{\cdot}cm$, a high PTCR intensity of approximately $3.3\times10^3$, implying the ratio of maximum resistivity to minimum resistivity (${\rho}_{max}/{\rho}_{min}$) in the measured temperature range, and a large resistivity temperature factor (a) of 13.7%/$^{\circ}C$ along with a high Curie temperature (Tc) of $167^{\circ}C$. In addition, the cooling rate of the samples during the sintering process had an influence on their PTCR behavior. All the samples showed the best ${\rho}_{max}/{\rho}_{min}$ ratio when they have cooled down at a rate of $600^{\circ}C$/min.

  • PDF

Group-based Random Access Using Variable Preamble in NB-IoT System (NB-IoT 시스템에서 가변 프리앰블을 이용한 그룹 랜덤 액세스)

  • Kim, Nam-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.370-376
    • /
    • 2020
  • In this study, we consider a group-based random access method for group connection and delivery by grouping devices when H2H devices and large-scale M2M devices coexist in a cell in NB-IoT environment. H2H devices perform individual random access, but M2M devices are grouped according to a NPRACH transmission period, and a leader of each group performs random access. The preamble is allocated using the variable preamble allocation algorithm of the Disjoint Allocation(DA) method. The proposed preamble allocation algorithm is an algorithm that preferentially allocates preambles that maximizes throughput of H2H to H2H devices and allocates the rest to M2M devices. The access distribution of H2H and M2M devices was set as Poisson distribution and Beta distribution, respectively, and throughput, collision probability and resource utilization were analyzed. As the random access transmission slot is repeated, the proposed preamble allocation algorithm decreases the collision probability from 0.93 to 0.83 and 0.79 when the number M2M device groups are 150. In addition, it was found that the amount of increase decreased to 33.7[%], 44.9[%], and 48.6[%] of resource used.

Piezoelectric and Electrical Characteristics of PMN-PZT Ceramics With Addition of Cr (Cr이 첨가된 PMN-PZT 세라믹스의 압전 및 전기적특성)

  • 장낙원;이두희;백동수;이개명;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.20-23
    • /
    • 1991
  • In this study, 0.05Pb(Mn$\_$1/3/Nb$\_$2/3/)O$_3$+ 0.95Pb(Zr/Ti)O$_3$+x[wt%]Cr$_2$O$_3$piezoelectric ceramics were fabricated by Hot-press method, and its structural, dielectrical, piezoelectrical properties, temperature stability and aging characteristics were investigated. Among the MPB and tetragonal compositions, the specimens with 0.2, 0.3 and 0.4 [wt%] Cr$_2$O$_3$ additive amount had the poisson ratio more than 1/3. At tetragonal phase, the aging was small, and the temperature stability was improved by Cr addition. The specimen most suitable to the HF device substrate was the one with the composition of 47/53 (Zr/Ti) an 0.4 [wt%] Cr$_2$O$_3$addition.

Effect of Thermal Aging in PMN-PZT Ceramics (PMN-PZT 세라믹스에 있어서 열에이징 효과)

  • 이개명;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.17-21
    • /
    • 1995
  • Tw types of Pb(Mn$\sub$1/3/Nb$\sub$2/3/)O$_3$+PZT Ceramics had been fabricated by hot-pressing method. One had cause grain and the other had fine grain doe to Cr$_2$O$_3$ addition. These specimen were poled by applying the DC electric field in various steps. The effects of thermal aging on their piezoelectric characteristics and temperature stability of the frequency were investigated.

  • PDF

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

LiNbO3 integrated optic devices with an UV-curable polymer buffer layer

  • Jeong, Woon-Jo;Kim, Seong-Ku;Park, Gye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.111-118
    • /
    • 2002
  • A new lithium niobate optical modulator with a polymer buffer layer on Ni in-diffused optical waveguide is proposed for the fist time, successfully fabricated and examined at a wavelength of 1.3 mm. By determining the diffusion parameters of Ni in-diffused waveguide to achieve more desirable mode size which is well matched to the mode in the fiber, the detailed results on the achievement of high optical throughput are reported. In addition, the usefulness of polymer buffer layer which can be applicable to a buffer layer in Ni in-diffused waveguide devices is demonstrated. Several sets of channel waveguides fabricated on Z-cut lithium niobate by Ni in-diffusion were obtained and on which coplanar traveling-wave type electrodes with a polymer-employed buffer layer were developed by a conventional fabrication method for characterizing of electro-optical performances of the proposed device. The experimental results show that the measured half-wave voltage is of ~10 V and the total measured fiber-to-fiber insertion loss is of ~6.4 dB for a 40 mm long at a wavelength of =1.3 mm, respectively. From the experimental results, it is confirmed that the polymer-employed buffer layer in LiNbO3 optical modulator can be a substitute material instead of silicon oxide layer which is usually processed at a high temperature of over $300^{\circ}C$. Moreover, the fabrication tolerances by using polymer materials in LiNbO3 optical modulators are much less strict in comparison to the case of dielectric buffer layer.

  • PDF