Nb₂O₅가 도핑된 (1-x)BaTiO₃ - x(Bi_{0.5}K_{0.5})TiO₃ 무연 세라믹스의 PTCR 효과

정영훈, 박용준, 이영진, 백종후, 이우영*, 김대준* 요업(세라믹)기술원, (주)하이엘*

The PTCR Effect in Lead-free (1-x)BaTiO₃ - x(Bi_{0.5}K_{0.5})TiO₃ Ceramics Doped with Nb₂O₅

Young Hun Jeong, Yong-Jun Park, Young-Jin Lee, Jong-Hoo Paik, Woo-Young Lee* and Dae-Joon Kim* KICET, Hiel Corp.*

Abstract: The positive temperature coefficient of resistivity (PTCR) effect in $(1-x)BaTiO_3$ - $x(Bi_0.5K_0.5)TiO_3$ doped with Nb₂O₅ was investigated. (Bi_{1/2}K_{1/2})TiO₃ (BKT) is more environment-friendly than PbTiO₃ in order to use in PTC thermistors. The incorporation of 1 mol% BKT to BaTiO₃ increased the Curie temperature (T_C) to 148°C. Doping of Nb₂O₅ to Ba_{0.99}(Bi_{0.5}K_{0.5})_{0.01}TiO₃ (BaBKT) ceramic has enhanced its PTCR effects. For the sample containing 0.025 mol% Nb₂O₅, it showed good PTCR properties; low resistivity at room temperature (ρ_r) of 30 Ω cm, a high PTCR intensity of approximately 3.3×10³, implying the ratio of maximum resistivity to minimum resistivity (ρ_{max}/ρ_{min}) in the measured temperature range, and a large resistivity temperature factor (a) of 13.7% C along with a high Curie temperature (T_C) of 167°C. In addition, the cooling rate of the samples during the sintering process had an influence on their PTCR behavior. All the samples showed the best ρ_{max}/ρ_{min} ratio when they have cooled down at a rate of 600°C/min.

Key Words: PTC, Ba_{0.99}(Bi_{0.5}K_{0.5})_{0.01}TiO₃, Curie temperature, Microstructure