DOI QR코드

DOI QR Code

Group-based Random Access Using Variable Preamble in NB-IoT System

NB-IoT 시스템에서 가변 프리앰블을 이용한 그룹 랜덤 액세스

  • Kim, Nam-Sun (Division of Electrical & Electronic Engineering, Daejin University)
  • Received : 2020.10.05
  • Accepted : 2020.10.14
  • Published : 2020.10.30

Abstract

In this study, we consider a group-based random access method for group connection and delivery by grouping devices when H2H devices and large-scale M2M devices coexist in a cell in NB-IoT environment. H2H devices perform individual random access, but M2M devices are grouped according to a NPRACH transmission period, and a leader of each group performs random access. The preamble is allocated using the variable preamble allocation algorithm of the Disjoint Allocation(DA) method. The proposed preamble allocation algorithm is an algorithm that preferentially allocates preambles that maximizes throughput of H2H to H2H devices and allocates the rest to M2M devices. The access distribution of H2H and M2M devices was set as Poisson distribution and Beta distribution, respectively, and throughput, collision probability and resource utilization were analyzed. As the random access transmission slot is repeated, the proposed preamble allocation algorithm decreases the collision probability from 0.93 to 0.83 and 0.79 when the number M2M device groups are 150. In addition, it was found that the amount of increase decreased to 33.7[%], 44.9[%], and 48.6[%] of resource used.

본 연구에서는 NB-IoT 환경에서 한 셀에 H2H 단말과 대규모의 M2M 단말이 공존하는 경우, 단말들을 그룹화하여 그룹 연결과 전달을 하는 그룹 기반 랜덤 액세스 방법을 고려한다. H2H 단말들은 개별 랜덤 액세스를 하지만 M2M 단말들은 NPRACH 전송주기에 따라 그룹화 하고, 각 그룹의 리더가 그룹 기반 랜덤 액세스를 수행한다. 비 결합 할당 방식(DA)으로 프리앰블을 할당하는데, H2H 단말의 처리량을 최대로 하는 프리앰블을 우선적으로 H2H 단말에 할당해 주고, 나머지를 M2M 단말에 할당해 주는 가변 프리앰블 할당 알고리즘을 제시하였다. H2H와 M2M 단말들의 접속 분포는 각각 포아송 분포와 베타 분포로 설정하여, 처리량, 충돌확률 그리고 자원 사용률로 분석한다. 랜덤 액세스 전송 슬롯이 반복됨에 따라 제안된 프리앰블 할당 알고리즘은 M2M 그룹 수가 150인 경우, 충돌확률을 0.93에서 0.83 그리고 0.79 로 감소함을 알 수 있었으며, 자원의 사용률이 33.7[%], 44.9[%], 48.6[%]로 증가의 폭이 줄어드는 것을 알 수 있었다.

Keywords

References

  1. "Connection' is power. New Narrowband Internet of Things Era," ETRI Webzine Vol. 80, 2017
  2. K. Junghyun, J. Soonbae, and Y. Cheolwoo, "Efficient Congestion Control Technique of Random Access and Grouping for M2M according to User Type on 3GPP LTE-A systems," Journal of IEIE, Vol.52, No.3, March 2015
  3. C. Eunmi and B. Chul Jung, "Analysis of Radio Resource Utilization for a Massive M2M Communication in LTE Systems," The Journal of KICS, Vol. 42 No. 3, pp. 562-565, 2017 https://doi.org/10.7840/kics.2017.42.3.562
  4. J. Soyi, K. Jinki, C. Hyerim, and K. Jaehyun, "Random Access Resource Allocation Algorithm using Unmanned Vehicle in massive Machine Type Communications," in Proc. KICS, Vol. 68, No. 1, pp. 494-495, 2019
  5. "Radio Resource Control (RRC) protocol specification (Release 13)," 3GPP TS 36.331, Vol. 13, June, 2016.
  6. H. Seungjang and B. Chuljung, "Dynamic Group Paging Mechanism for Massive IoT Networks," in Proc. KICS, Jan. 2018
  7. L. Byunghyun, M. Seokjae, and L. Jangwon, "Group-based access for Signaling overhead reduction of IoT devices," in Proc. JCCI, 2018
  8. J. Younghwan, Group-based communi- cations for scalable machine-to- machine communications in LTE- advanced networks, Ph. D. Dissertation, Korea University, June 2016.
  9. 3GPP TR 37.868, "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on RAN Improvements for Machine Type Communications; MAC layer; Measurements(Release 11)," 2012.
  10. A. Pourmoghadas and P. G. Poonacha, "Performance analysis of a machine-to- machine friendly MAC algorithm in LTE-advanced," 2014 Int. Conf. on ICACCI, pp. 99-105, 2014
  11. G. M. Bouba, J. J. Mbainaibeye, K. T. James, and L. Claude, "Advanced Random Access Channel Congestion Detection Model for Internet of Thing Based on Long Term Evolution and Mathematical Analysis," Int. Journal of MCTR, Vol. 6, pp. 1-7, 2018