• Title/Summary/Keyword: Nb addition

Search Result 491, Processing Time 0.018 seconds

Line-shaped superconducting NbN thin film on a silicon oxide substrate

  • Kim, Jeong-Gyun;Suh, Dongseok;Kang, Haeyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.20-25
    • /
    • 2018
  • Niobium nitride (NbN) superconducting thin films with the thickness of 100 and 400 nm have been deposited on the surfaces of silicon oxide/silicon substrates using a sputtering method. Their superconducting properties have been evaluated in terms of the transition temperature, critical magnetic field, and critical current density. In addition, the NbN films were patterned in a line with a width of $10{\mu}m$ by a reactive ion etching (RIE) process for their characterization. This study proves the applicability of the standard complementary metal-oxide-semiconductor (CMOS) process in the fabrication of superconducting thin films without considerable degradation of superconducting properties.

Strengthening of Steel by Small Addition of Nb. V. etc.

  • Imai, Yunoshin;Shono, Yoshio
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.279-287
    • /
    • 1970
  • An an element vanadium is most effective and next is noibium to strengthening the low carbon steels by small addition both on fine precipitation and five grain. The combination effect of vanadium plus niobium or vanadium plus molybdenum is much more effective than adding on element.

  • PDF

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Effect of MnO2 Addition on Dielectric and Piezoelectric Properties of 0.985[Li0.04(Na0.545K0.46)0.96(Nb0.81Ta0.15Sb0.04)]O3 Ceramics (MnO2 첨가가 0.985[Li0.04(Na0.545K0.46)0.96(Nb0.81Ta0.15Sb0.04)]O3+0.015KNbO3 세라믹스의 유전 및 압전 특성에 미치는 영향)

  • Kim, YouSeok;Yoo, JuHyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.361-366
    • /
    • 2014
  • $MnO_2$-doped $0.985[Li_{0.04}(Na_{0.545}K_{0.46})_{0.96}(Nb_{0.81}Ta_{0.15}Sb_{0.04})]O_3+0.015KNbO_3(0.985LNKNTS+0.015KNbO_3)$ lead-free ceramics were fabricated by conventional solid state method to develop excellent dielectric and piezoelectric properties. The result of X-ray diffraction patterns obviously indicated that all of the specimen has pure perovskite structure without secondary phase. In addition, orthorhombic phase and coexistance region of orthorhombic-tetragonal phase (MPB) were observed with amount of $MnO_2$. The optimal values of ${\rho}$=4.70 $g/cm^3$, $d_{33}=238$ pC/N, $k_P=0.46$, $Q_m=121$, ${\varepsilon}_r=849$, and $T_C=225^{\circ}C$ were obtained at 0.01 mol% $MnO_2$ doped $0.985LNKNTS+0.015KNbO_3$ ceramics sintered at $990^{\circ}C$ for 5 h, respectively. Hence, it was indicated that the suitable amount of $MnO_2$ could improve the electrical properties of $0.985[Li_{0.04}(Na_{0.545}K_{0.46})_{0.96}(Nb_{0.81}Ta_{0.15}Sb_{0.04})]O_3+0.015KNbO_3$ ceramics.

Effects of Softener and Hardener Co-doping on Properties of PZT Piezoelectric Ceramics (Softener 및 Hardener 동시 첨가가 PZT 압전세라믹에 미치는 영향)

  • Lee, Eon-Jong;Kim, Yun-Hae;Lee, Byeong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.81-85
    • /
    • 2010
  • The effects of co-doping with complex dopants of softeners, $La^{+3}$ and/or $Nb^{+5}$, and a hardener, $Fe^{+3}$, on the microstructural and piezoelectric properties of PZT ceramics with a composition of a rhombohedral-tetragonal morphotropic phase boundary, $PbZr_{0.53}Ti_{0.47}O_3$, were investigated. Unlike single-element doping, the complex doping of both the softener and hardener ions led to various compensation effects for the piezoelectric properties of the PZT ceramics. For 0.5 wt.% $La_2O_3$ softener and/or 0.5 wt.% $Nb_2O_5$ doped compositions, there were apparent hardener doping (compensation) effects for an addition of over 1.0 wt.% $Fe_2O_3$. For the $La_2O_3$ and/or $Nb_2O_5$ doped composition, the co-dopant $Fe_2O_3$ addition led to lower kp and $\varepsilon$r, and increased $Q_m$ values. The prepared PZT ceramics modified with complex soft dopants, $La^{+3}$ and $Nb^+$, as well as a hard dopant, $Fe^{+3}$, showed that the piezoelectric properties were stable with the compositional variations, which made it possible to establish piezoelectric performances with higher reliability and reproducibility. The most improved piezoelectric properties of enhanced $Q_m$ with $\varepsilon_r$ remaining higher $k_p$, were obtained in the PZT composition complexly doped with $La^{+3}$ and $Fe^{+3}$. From the results obtained in this study, the properties of compositionally modified PZT ceramics can also be tailored over a wider range by changing the dopant compositions to meet the specific requirements for underwater or other applications.

Piezoelectric Properties of Lead-Free (K0.5Na0.5)NbO3 Ceramics Added with ZnO and MnO2 (ZnO와 MnO2를 동시에 첨가한 (K0.5Na0.5)NbO3 세라믹스의 압전 특성에 대한 연구)

  • Hong, Young Hwan;Park, Young-Seok;Jeong, Gwang-Hwi;Cho, Sung Youl;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.210-214
    • /
    • 2016
  • We investigated the sintering behavior and piezoelectric properties of lead-free $(K_{0.5}Na_{0.5})NbO_3$ ceramics co-doped with excess 0.01 mol ZnO and x mol $MnO_2$, where x was varied from 0 to 0.03. Excess $MnO_2$ addition was found to retard the grain growth and densification during sintering. However, 0.005 mol $MnO_2$ addition improved the piezoelectric properties of 0.01 mol ZnO added $(K_{0.5}Na_{0.5})NbO_3$ ceramics. The planar mode piezoelectric coupling coefficient, electromechanical quality factor, and piezoelectric constant $d_{33}$ of 0.01 mol ZnO and 0.005 mol $MnO_2$ added specimen were 0.40, 304, and 214 pC/N, respectively.

Measurement of Hardness of Constituent Phases in Ti(C0.7N0.3)-NbC-Ni Cermets Using Nanoindentation (나노인덴테이션을 이용한 Ti(C0.7N0.3)-NbC-Ni 써멧 구성상의 경도평가)

  • Kim, Seong-Won;Kim, Dae-Min;Kang, Shin-Hoo;Ryu, Sung-Soo;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.482-488
    • /
    • 2008
  • The indentation technique has been one of the most commonly used techniques for the measurement of the mechanical properties of materials due to its experimental ease and speed. Recently, the scope of indentation has been enlarged down to the nanometer range through the development of instrumentations capable of continuously measuring load and displacement. In addition to testing hardness, the elastic modulus of submicron area could be measured from an indentation load-displacement (P-h) curve. In this study, the hardness values of the constituent phases in Ti($C_{0.7}N_{0.3}$)-NbC-Ni cermets were evaluated by nanoindentation. SEM observation of the indented surface was indispensable in order to separate the hardness of each constituent phase since the Ti($C_{0.7}N_{0.3}$)-based cermets have relatively inhomogeneous microstructure. The measured values of hardness using nanoindentation were ${\sim}20$ GPa for hard phase and ${\sim}10$ GPa for binder phase. The effect of NbC addition on hardness was not obvious in this work.

Study on the Recovery and Recrystalligation of Cold-lolled Zr-based Alloys by Thermoelectric Power Measurement During Isothermal Annealing (TEP 분석을 이용한 냉간가공된 Zr-based 합금의 등온열처리에 따른 회복 및 재결정 거동에 관한 연구)

  • O, Yeong-Min;Jeong, Heung-Sik;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.483-491
    • /
    • 2001
  • The recovery and recrystallization behavior of cold-rolled Zr-based alloys during isothermal annealing at temperatures from $575^{\circ}C$ to $650^{\circ}C$ was studied by thermoelectric power and Vickers microhardness measurement. The recovery and recrystallization resulted in the increase of TEP doe to the extinction of lattice defect, vacancy, dislocation and stacking fault during isothermal annealing after cold- rolling. The completion of recrystallization could be determined much clearly by TEP behavior than by microhardness change in Zr-based alloys. Especially, the recovery and recrystallization were classified separately by TEP behavior in Zr-0.4Nb-xSn alloys. From the analysis of TEP behavior and microhardness, the addition of Sn caused to form the interaction between stain field and dislocation, which resulted in the delay of recovery in Zr-based alloys. The precipitation due the addition of Nb suppressed the grain growth after recrystallization effectively in Zr-based alloys.

  • PDF

Piezoelectric and Strain Properties of Lead-free (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 Ceramics (비납계 (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 세라믹의 압전 및 변위 특성)

  • Ryu, Jung-Ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.628-633
    • /
    • 2011
  • Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.

Effect of Iron Oxide on the Dielectric and Piezoelectric Properties of (K0.5Na0.5)(Nb0.96Sb0.04)O3Ceramics (Iron Oxide가 (K0.5Na0.5)(Nb0.96Sb0.04)O3 세라믹스의 유전 및 압전특성에 미치는 영향)

  • Seo, Byeong-Ho;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.617-621
    • /
    • 2010
  • ($K_{0.5}Na_{0.5}$)($Nb_{0.96}Sb_{0.04}$)$O_3$+1.2 mol% $K_4CuNb_8O_{23}$ ceramics doped with iron oxide ($Fe_2O_3$) were prepared by a conventional mixed oxide method. And then, their piezoelectric and dielectric properties were investigated as a function of $Fe_2O_3$ addition. X-ray diffraction studies reveal that $Fe^{3+}$ diffuses into the NKN lattices to form a solid solution with a pure perovskite structure at room temperature. At the sintering temperature of $1,060^{\circ}C$, when 0.2 mol% $Fe_2O_3$ was doped, the piezoelectric constant ($d_{33}$), electromechanical coupling factor (Kp), and mechanical quality factor ($Q_m$) showed the excellent values of 131.67 pC/N, 0.436, and 696.36, respectively. Results show that $Fe_2O_3$ deped ($K_{0.5}Na_{0.5}$)($Nb_{0.96}Sb_{0.04}$)$O_3$+1.2 mol% $K_4CuNb_8O_{23}$ lead-free piezoelectric ceramics are a promising lead free material for piezoelectric transformer applications.