• Title/Summary/Keyword: Navigation systems

Search Result 2,567, Processing Time 0.029 seconds

Development of Test-Equipment for AUVs' Navigation Performance Pre-verification (자율무인잠수정의 항법성능 사전 검증을 위한 시험치구 개발)

  • Hansol Lee;Gwonsoo Lee;Ho Sung Kim;Kihwan Choi;Jinwoo Choo;Hyungjoo Kang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.472-480
    • /
    • 2023
  • This paper describes the development of a test-equipment for the pre-verification of navigation performance in cluster-based AUVs (Autonomous Underwater Vehicle). In the development of an AUV, conducting hardware and software development sequentially is not efficient due to the limited research and development period. Therefore, in order to reduce the overall development time and achieve successful development results, it is essential to pre-validate the navigation system and navigation algorithms. Accordingly, this paper explains the test-equipment for pre-verification of navigation performance, and ultimately confirms the stability of the navigation system and the performance of the navigation algorithms through the analysis of five types of navigation sensor data stored during real-sea experiments. The results demonstrate that through the development and verification of the test-equipment, it is possible to shorten the overall development period and improvement of product quality in the process of developing multiple AUVs.

Status of Navigation Satellite System Services and Signals (위성항법시스템 서비스 및 신호 현황)

  • K. Han;E. Bang;H. Lim;S. Lee;S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.12-25
    • /
    • 2023
  • Positioning, navigation, and timing information has become a key element in the national core infrastructure and for emerging technologies, such as autonomous driving, lunar exploration, financial systems, and drones. Therefore, the provision of that information by navigation satellite systems is becoming increasingly important. Existing systems such as GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), and BDS (BeiDou Navigation Satellite System) also provide augmentation, safety-of-life, search & rescue and short message communication and authentication services to increase their competitiveness. Those services and the signals generated for their provision have their own purpose and requirements. This article presents an overview of existing or planned satellite navigation satellite system services and signals, aiming to help understand their current status.

Geophysical Navigation for UUV without External Telemetry Systems (지구 물리정보를 이용한 무인잠수정의 복합 항법 기술)

  • Jang, Junwoo;Cho, Hyunkuen;Kim, Jinwhan;Byun, Seung-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • Alternative navigation in underwater environments is essential to prevent accumulating drift error of dead reckoning. In case of using an external positioning system, the installation and management process of the transmission station is cumbersome, and the operation range of underwater vehicle is limited. In order to solve this problem, navigation using geophysical information such as terrain, geomagnetic field and gravity can be used. Unlike the terrain, geomagnetic field and gravity are composed of 3-D information, so continuation process is required. In this paper, we present a integrated navigation algorithm using multiple geophysical information for long-term operation of UUV. The proposed algorithm is verified through numerical simulation in an artificially generated environments. As a result, integrated navigation showed higher navigation accuracy than single alternative navigation.

Monitoring System Design for the GPS/INS Integrated Navigation System (GPS/INS 통합 항법 시스템용 모니터링 시스템 설계)

  • 한상재;오상헌;황동환;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.242-250
    • /
    • 2003
  • We propose the monitoring system scheme for the CPS/INS integrated navigation system. The design requirements of the monitoring system are suggested and the software scheme based on GUI is proposed. The proposed monitoring system consists of an I/O interface part, a navigation data display part, and a post-processing part. The I/O interface part is responsible for data communication between the monitoring system and a navigation computer unit. The navigation data display part provides various display methods to show the navigation data to user in real-time. The post-processing part collects the navigation data to analyze the performance of navigation system. The proposed monitoring system software was developed using the Visual C++ programming language and a van test was carried out to demonstrate the real-time operation of the monitoring system. The test result shows that the proposed monitoring system can be effectively applied to the CPS/INS integrated navigation system.

Design of Trajectory Generator for Performance Evaluation of Navigation Systems

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.409-421
    • /
    • 2023
  • In order to develop navigation systems, simulators that provide navigation sensors data are required. A trajectory generator that simulates vehicle motion is needed to generate navigation sensors data in the simulator. In this paper, a trajectory generator for evaluating navigation system performance is proposed. The proposed trajectory generator consists of two parts. The first part obtains parameters from the motion scenario file whereas the second part generates position, velocity, and attitude from the parameters. In the proposed trajectory generator six degrees of freedom, halt, climb, turn, accel turn, spiral, combined, and waypoint motions are given as basic motions with parameters. These motions can be combined to generate complex trajectories of the vehicle. Maximum acceleration and jerk for linear motion and maximum angular acceleration and velocity for rotational motion are considered to generate trajectories. In order to show the usefulness of the proposed trajectory generator, trajectories were generated from motion scenario files and the results were observed. The results show that the proposed trajectory generator can accurately simulate complex vehicle motions that can be used to evaluate navigation system performance.

Interactive Navigational Structures

  • Czaplewski, Krzysztof;Wisniewski, Zbigniew
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.495-500
    • /
    • 2006
  • Satellite systems for objects positioning appeared indispensable for performing basic tasks of maritime navigation. Navigation, understood as safe and effective conducting a vehicle from one point to another, within a specific physical-geographical environment. [Kopacz, $Urba{\acute{n}}ski$, 1998]. However, the systems have not solved the problem of accessibility to reliable and highly accurate information about a position of an object, especially if surveyed toward on-shore navigational signs or in sea depth. And it's of considerable significance for many navigational tasks, carried out within the frameworks of special works performance and submarine navigation. In addition, positioning precisely the objects other than vessels, while executing hydrographical works, is not always possible with a use of any satellite system. Difficulties with GPS application show up also while positioning such off-lying dangers as wrecks, underwater and aquatic rocks also other naturaland artificial obstacles. It is caused by impossibility of surveyors approaching directly any such object while its positioning. Moreover, determination of vessels positions mutually (mutual geometrical relations) by teams carrying out one common tasks at sea, demands applying the navigational techniques other than the satellite ones. Vessels'staying precisely on specified positions is of special importance in, among the others, the cases as follows: - surveying vessels while carrying out bathymetric works, wire dragging; - special tasks watercraft in course of carrying out scientific research, sea bottom exploration etc. The problems are essential for maritime economy and the Country defence readiness. Resolving them requires applying not only the satellite navigation methods, but also the terrestrial ones. The condition for implementation of the geo-navigation methods is at present the methods development both: in aspects of their techniques and technologies as well as survey data evaluation. Now, the classical geo-navigation comprises procedures, which meet out-of-date accuracy standards. To enable meeting the present-day requirements, the methods should refer to well-recognised and still developed methods of contemporary geodesy. Moreover, in a time of computerization and automation of calculating, it is feasible to create also such software, which could be applied in the integrated navigational systems, allowing carrying out navigation, provided with combinatory systems as well as with the new positioning methods. Whereas, as regards data evaluation, there should be applied the most advanced achievements in that subject; first of all the newest, although theoretically well-recognised estimation methods, including estimation [Hampel et al. 1986; $Wi{\acute{s}}niewski$ 2005; Yang 1997; Yang et al. 1999]. Such approach to the problem consisting in positioning a vehicle in motion and solid objects under observation enables an opportunity of creating dynamic and interactive navigational structures. The main subject of the theoretical suggested in this paper is the Interactive Navigational Structure. In this paper, the Structure will stand for the existing navigational signs systems, any observed solid objects and also vehicles, carrying out navigation (submarines inclusive), which, owing to mutual dependencies, (geometrical and physical) allow to determine coordinates of this new Structure's elements and to correct the already known coordinates of other elements.

  • PDF

Development of Augmented Reality Indoor Navigation System based on Enhanced A* Algorithm

  • Yao, Dexiang;Park, Dong-Won;An, Syung-Og;Kim, Soo Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4606-4623
    • /
    • 2019
  • Nowadays modern cities develop in a very rapid speed. Buildings become larger than ever and the interior structures of the buildings are even more complex. This drives a high demand for precise and accurate indoor navigation systems. Although the existing commercially available 2D indoor navigation system can help users quickly find the best path to their destination, it does not intuitively guide users to their destination. In contrast, an indoor navigation system combined with augmented reality technology can efficiently guide the user to the destination in real time. Such practical applications still have various problems like position accuracy, position drift, and calculation delay, which causes errors in the navigation route and result in navigation failure. During the navigation process, the large computation load and frequent correction of the displayed paths can be a huge burden for the terminal device. Therefore, the navigation algorithm and navigation logic need to be improved in the practical applications. This paper proposes an improved navigation algorithm and navigation logic to solve the problems, creating a more accurate and effective augmented reality indoor navigation system.

LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems (다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계)

  • Jae Hoon Son;Junwoo Jung;Sang Heon Oh;JunMin Park;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.

GPS and Inertial Sensor-based Navigation Alignment Algorithm for Initial State Alignment of AUV in Real Sea (실해역 환경에서 무인 잠수정의 초기 상태 정렬을 위한 GPS와 관성 항법 센서 기반 항법 정렬 알고리즘)

  • Kim, Gyu-Hyeon;Lee, Jihong;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • This paper describes an alignment algorithm that estimates the initial heading angle of AUVs (Autonomous Underwater Vehicle) for starting navigation in a sea area. In the basic dead reckoning system, the initial orientation of the vehicle is very important. In particular, the initial heading value is an essential factor in determining the performance of the entire navigation system. However, the heading angle of AUVs cannot be measured accurately because the DCS (Digital Compass) corrupted by surrounding magnetic field in pointing true north direction of the absolute global coordinate system (not the same to magnetic north direction). Therefore, we constructed an experimental constraint and designed an algorithm based on extended Kalman filter using only inertial navigation sensors and a GPS (Global Positioning System) receiver basically. The value of sensor covariance was selected by comparing the navigation results with the reference data. The proposed filter estimates the initial heading angle of AUVs for navigation in a sea area and reflects sampling characteristics of each sensor. Finally, we verify the performance of the filter through experiments.

Simulator Design Using a General Purpose PC and Off-The-Shelf Interface Boards for GNSS/INS Integrated Navigation System (GNSS/INS 통합항법 시스템을 위한 범용 PC와 Off-The-Shelf 인터페이스 보드를 이용한 시뮬레이터 설계)

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation systems provide highly accurate and reliable navigation solutions and are widely used as civil and military navigation systems. In order to facilitate the GNSS/INS integrated navigation system development task, a simulator can be used to provide inputs for the GNSS/INS integrated navigation system. In this paper, a simulator design using general-purpose Personal Computer (PC) and Off-The-Shelf (OTS) interface boards for a GNSS/INS integrated navigation system is proposed and implementation results are presented. Requirements of the GNSS/INS integrated navigation system simulator are presented and a design method that satisfies the requirements is described. In order to show the usefulness of the proposed design method, a simulator using a general-purpose PC and OTS interface boards for the GPS/INS integrated navigation system are implemented and verified. The implementation results show that the simulator designed by the proposed method generates the GPS L1 C/A signal and IMU data without any problems.