• 제목/요약/키워드: Navigation device

Search Result 435, Processing Time 0.023 seconds

An Analysis of Spoofing Effects on a GNSS Receiver Using Real-Time GNSS Spoofing Simulator (실시간 GNSS 기만 시뮬레이터를 이용한 위성항법수신기에서의 기만 영향 분석)

  • Im, Sung-Hyuck;Im, Jun-Hyuck;Jee, Gyu-In;Heo, Mun-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • In this paper, spoofing effects on a GNSS receiver were analyzed. The spoofer (spoofing device) was classified to two categories. One is an active spoofer and the other is a passive spoofer. The active spoofer was considered for analysis. For the analysis of spoofing effects on a GNSS receiver, a real-time GNSS spoofing simulator was developed. The simulator was consisted with two parts which are a baseband signal generation part and a RF up-conversion part. The first GNSS baseband signal was generated according to spoofing parameters such as range, range rate, GNSS navigation data, spoofing to GNSS signal ratio, and etc. The generated baseband signal was up-converted to GNSS L1 band. Then the signal transmitted to a GNSS signal. For a perfect spoofing, a spoofer knew an accurate position and velocity of a spoofing target. But, in real world, that is not nearly possible. Although uncertainty of position and velocity of the target was existed, the spoofer was operated as an efficient jammer.

Development of Ship Identification and Display System using Unmaned Aerial Vehicle System (무인항공기 시스템을 활용한 선박 식별 및 도시 시스템 개발)

  • Choy, Seong-min;Ko, Yun-ho;Kang, Youngshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.862-870
    • /
    • 2016
  • AIS and V-PASS, which are used for safe navigation and automatic vessel arrival and departure, are mandatory standard equipment installed on all ships. If an aircraft is equipped with a ship identification system using AIS and V-PASS, and then ship identification information is received by a vessel such as a large fishery inspection boat or a patrol ship or a ground control system, we can quickly perform maritime surveillance and disaster response. This paper describes the development of a ship identification and display system using a ship identification device for aircraft. Flight test results and a future application plan are also included.

Flow Visualization and PIV Analysis around a 2-Dimensional Flapped Foil (균일 흐름 중에 놓인 2차원 가변익 주위의 유동가시화 및 PIV 해석)

  • Oh, Kyoung-Gun;Choi, Hee-Jong;Lee, Gyoung-Woo;Choi, Min-Son;Lee, Seung-Keon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2005.05a
    • /
    • pp.62-69
    • /
    • 2005
  • Maneuverability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship maneuvering characteristics, to improve it. High-lift device could be applied to design of rudder at design stage. Now, we carried out the flow visualization and inversitgation of flow around a flap rudder (trailing-edge flap). Flow visualization results of flap defection shown as the flow around a NACA0020 Flap Rudder will be conducted in a Circulating Water Channel. The purpose of this investigation will be to investigate the development of the separation region on the flap rudder with the variation of angle of attack and determine the angle of attack at which the flow separates and reattaches.

  • PDF

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian;Shkel, Andrei
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-82
    • /
    • 2005
  • This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.

The Virtual Model House System using Modeling-based Eyetracking (모델링 기반 시선추적을 이용한 가상모델하우스 시스템)

  • Lee, Dong-Jin;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.223-227
    • /
    • 2010
  • Since the most of existing virtual model house used non-immersive type virtual reality technology, it was made to control using direct input type device such as keyboard and mouse. But in this paper realized not only direct data entry method but also indirect data entry method using eyetracking technology through universal webcam for virtual model house based upon modeling. In this paper showed the position of pointer controlled according to the relative movement of pupils or the part of function related to the equipment entry called by comparing the value of gray after extracting the area of pupil in the user' video data received from webcam. Such a method provided the convenience of navigation and interface to the user.

Use of a gesture user interface as a touchless image navigation system in dental surgery: Case series report

  • Rosa, Guillermo M.;Elizondo, Maria L.
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • Purpose: The purposes of this study were to develop a workstation computer that allowed intraoperative touchless control of diagnostic and surgical images by a surgeon, and to report the preliminary experience with the use of the system in a series of cases in which dental surgery was performed. Materials and Methods: A custom workstation with a new motion sensing input device (Leap Motion) was set up in order to use a natural user interface (NUI) to manipulate the imaging software by hand gestures. The system allowed intraoperative touchless control of the surgical images. Results: For the first time in the literature, an NUI system was used for a pilot study during 11 dental surgery procedures including tooth extractions, dental implant placements, and guided bone regeneration. No complications were reported. The system performed very well and was very useful. Conclusion: The proposed system fulfilled the objective of providing touchless access and control of the system of images and a three-dimensional surgical plan, thus allowing the maintenance of sterile conditions. The interaction between surgical staff, under sterile conditions, and computer equipment has been a key issue. The solution with an NUI with touchless control of the images seems to be closer to an ideal. The cost of the sensor system is quite low; this could facilitate its incorporation into the practice of routine dental surgery. This technology has enormous potential in dental surgery and other healthcare specialties.

Theoretical Analysis of Wave Energy Converter

  • Oh, Jin-Seok;Komatsu, Toshimitsu;Kim, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.169-174
    • /
    • 2008
  • Floating devices, such as a cavity resonance device take advantage of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular floatation body which contains a vertical center pipe that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter for buoy. This paper presents the analysis results and the design method for the WEC(Wave Energy Converter), and the associate results are application to the commercially available WEC for buoy. Maximum performance of WEC occurs at resonance with driving waves. The analysis of WEC is performed with LabVIEW program, and the design method of WEC for buoy is suggested in this paper.

Development of Mobile Robot for Rough Terrain (야지 주행을 위한 견마형 로봇 개발)

  • Lee, Ji-Hong;Shim, Hyung-Won;Jo, Kyoung-Hwan;Hong, Ji-Mi;Kim, Jung-Bae;Kim, Sung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.883-895
    • /
    • 2007
  • In this work, we present the development of a patrol robot which is intended to navigate outdoor rough terrain. Proposed mechanism consists of six legs for overcoming an obstacle, and six wheels for traveling. Also, in order to absorb vibration in rough terrain effectively, the slide-spring system and tubed type tire are adopted to each leg and each wheel. The control system of robot consists of several imbedded boards for management of lots of diverse devices such as sensors designed for rough terrain, motor controllers, camera, micro controller and so on. And the base system of the robot is designed to operate in real time and to surveille in the vicinity of the robot, and the robot system is controlled by wireless LAN connected to GUI-based remote control system, while CAN communication connects the control board and the device controllers for sensors and motor controllers. For operating this robot system efficiently, we propose the control algorithms for autonomous navigation using GPS, stabilization maintenance by posture control, obstacle-avoidance by impedance control, and obstacle-overcoming with interference-avoidance between wheels. The performance of the robot and the proposed algorithms are tested and proved by a set of experiments in outdoor rough terrain.

Development and Application of Wave Measurement System Using Radar (레이더를 이용한 파랑 계측 시스템의 개발 및 적용)

  • Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun;Jang, Hyun-Sook;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong;Park, Gun-Il
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.23-33
    • /
    • 2006
  • Generally wave buoy and visual observation are used to measure sea waves. But the wave buoy cannot be applicable for the ship moving in deep sea. So the visual observation has been used for it. But it has several defects and limitation related to environmental condition and observer. To overcome this problem, various wave measurement systems have been suggested. Recently, the wave measurement systems using nautical X-band radar have been developed and extended its application area. In this report, we introduce the wave measurement system, WaveFinder, developed by authors. The system was calibrated and verified with the measurement results of wave buoy. The system was adopted to measure wave condition during sea trials. The system will be a device to support safe navigation in ship's voyage.

  • PDF

Test and Evaluation of Onboard Equipments for Guided Missile via Captive Flight Test (탑재비행시험을 이용한 유도무기 탑재장비의 시험평가)

  • Lee, Sung-Mhan;Oh, Hyun-Shik;Sung, Duck-Yong;Lee, Su-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.73-78
    • /
    • 2007
  • The process and results of Captive Flight Test(CFT), conducted by Agency for Defense Development(ADD) using the Korean KTX-1 trainer and external fuel tank, are presented. Through over 150 sorties of CFT, the guided weapon system's critical subsystems like Seeker, Navigation Device and Technology, Inertial Sensor, and Radio Altimeter are tested and evaluated. Using the CFT, time and cost are saved in weapon system research and development procedure.