• Title/Summary/Keyword: Navier-Stokes Flow

Search Result 1,584, Processing Time 0.028 seconds

TURBULENT FLOW SIMULATION ON THE GROUND EFFECT ABOUT A 2-DIMENSIONAL AIRFOIL (2차원 날개 주위의 지면효과에 대한 난류 유동장 해석)

  • Kim, Y.S.;Lee, J.E.;Shin, M.S.;Kang, K.J.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.81-89
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has turned out that angle of attack between 2 and 8 degrees is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is faded away and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability occurs and the separation point moves to forward as the airfoil approaches a ground.

A Comparative Study between Steady and Unsteady Solutions of NACA0012 Airfoil flow (NACA0012 에어포일 주위 유동의 정상해와 비정상해 비교 연구)

  • Chu, Yeon-Bok;Jang, Gyeong-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.121-124
    • /
    • 2012
  • 비정상 유동 해석을 수행하는데 있어서 비정상 Navier-Stokes 방정식을 적용한 결과와 정상 N-S 지배 방정식을 적용한 결과의 차이를 비교하려한다. 적용하고자 하는 비정상 유동은 대칭형 에어포일 NACA0012 에어포일 주위 유동으로 정하였으며, 이 때 에어포일 시위(chord) 길이와 자유류(free stream) 속도 기준으로 Re=100,000에 해당한다. 계산결과 비정상 지배 방정식을 적용한 경우 비정상 유동박리(flow separation)를 모사 할 수 있었으며, 평균 양력계수($C_L$)와 항력계수($C_D$)는 실험치와 비교적 잘 일치하였다. 하지만 정상 N-S 방정식을 적용했을 경우 비정상 유동을 모사하기 어려웠으며 평균양력, 항력계수도 실험치와 차이를 보였다. 이러한 결과는 비정상 유동 해석시 시간에 따라 변화하는 유동의 특성을 고려해 비정상 N-S 지배 방정식을 적용해야한다는 사실을 보이고 있다.

  • PDF

FLOW AND TEMPERATURE ANALYSIS WITHIN AUTOMOBILE CABIN BY DISCHARGED HOT AIR FROM DEFROST NOZZLE

  • Park, W.G.;Park, M.S.;Jang, K.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • As an automobile tends to be high grade, the needs for more luxurious interior and comfortable HVAC system are emerged. The defrosting ability is another major factor of the performances of HVAC system. The present work is to simulate the flow and the temperature field of cabin interior during the defrost mode. The three-dimensional incompressible Navier-Stokes equations and energy equation were solved on the multi blocked grid system by the iterative time marching method and AF scheme, respectively. The present computations were validated by the comparison of the temperature field of a driven cavity and velocity field of 1/5 model scale of an automobile. Generally good agreements were obtained. By the present computation, the complicated features of flow and temperature within the automotive cabin interior could be well understood.

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method (Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석)

  • Park K. S.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF

NAVIER-STOKES SIMULATION OF A MICRO-VISCOUS PUMP (초소형 점성 펌프의 Wavier-Stokes 해석)

  • Kang, D.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.75-80
    • /
    • 2006
  • Navier-Stokes simulation of the flow in a micro viscous pump is carried out. The micro viscous pump consists of a rotating circular rotor placed in a two dimensional channel. All simulation is carried out by using a finite volume approach, at the Reynolds number of 0.5, to study the performance of the micro viscous pump. Length of channel of the pump is varied to simulate the effects of the pumping load. Numerical solutions show that the net flow of the pump is realized by two counter rotating vortices formed on both sides of the rotor. The volume flow rate of the pump is decreased as length of the channel is increased, while the static pressure difference across the rotor is increased. The static pressure difference across the rotor is observed to be inversely proportional to the volume flow rate as inertia effects are negligibly small. The efficiency of the pump is found to reach a maximum when two counter rotating vortices on both sides of the rotor becomes to merge forming an outer enveloping vortex.

Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(1) - Development of Optimization Algorithm and Techniques for Large-Scale and Highly Nonlinear Flow Problem (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(1) - 대용량, 비선헝 유체의 최적화를 위한 알고리즘 및 테크닉의 개발)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.661-669
    • /
    • 2007
  • Eyer since the Prandtl's experiment in 1934 and X-21 airjet test in 1950 both attempting to reduce drag, it was found that controlling the velocities of surface for extremely fast-moving object in the air through suction or injection was highly effective and active method. To obtain the right amount of suction or injection, however, repetitive trial-and error parameter test has been still used up to now. This study started from an attempt to decide optimal amount of suction and injection of incompressible Navier-Stokes by employing optimization techniques. However, optimization with traditional methods are very limited, especially when Reynolds number gets high and many unexpected variables emerges. In earlier study, we have proposed an algorithm to solve this problem by using step by step method in analysis and introducing SQP method in optimization. In this study, we propose more effective and robust algorithm and techniques in solving flow optimization problem.

Topology Optimization of Incompressible Flow Using P1 Nonconforming Finite Elements (P1 비순응 요소를 이용한 비압축성 유동 문제의 위상최적화)

  • Jang, Gang-Won;Chang, Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1139-1146
    • /
    • 2012
  • An alternative approach for topology optimization of steady incompressible Navier-Stokes flow problems is presented by using P1 nonconforming finite elements. This study is the extended research of the earlier application of P1 nonconforming elements to topology optimization of Stokes problems. The advantages of the P1 nonconforming elements for topology optimization of incompressible materials based on locking-free property and linear shape functions are investigated if they are also valid in fluid equations with the inertia term. Compared with a mixed finite element formulation, the number of degrees of freedom of P1 nonconforming elements is reduced by using the discrete divergence-free property; the continuity equation of incompressible flow can be imposed by using the penalty method into the momentum equation. The effect of penalty parameters on the solution accuracy and proper bounds will be investigated. While nodes of most quadrilateral nonconforming elements are located at the midpoints of element edges and higher order shape functions are used, the present P1 nonconforming elements have P1, {1, x, y}, shape functions and vertex-wisely defined degrees of freedom. So its implentation is as simple as in the standard bilinear conforming elements. The effectiveness of the proposed formulation is verified by showing examples with various Reynolds numbers.