• Title/Summary/Keyword: Navier-Stokes 계산

Search Result 275, Processing Time 0.022 seconds

Analysis of Laminar Flows around Submerged Spheres (물 밑에 잠긴 구 주위의 층류 유동장 해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1094-1099
    • /
    • 2010
  • Three dimensional laminar flows are numerically simulated around the submerged spheres. The finite volume based Navier-Stokes equations with unstructured grids are solved to make clear the hydrodynamic phenomena near and far away from the body. Reviews are made on with the vorticity, velocity, dynamic pressure, residuals, drags, etc. The Reynolds numbers under consideration are 425, 300, 250 and 100. In case of small spacing between spheres, the flow is more stable than that past a single sphere. According to the analysis, the flow past two spheres is found to be unstable as the spacing becomes larger. The rear sphere shows the deduction of stagnation pressure, which results in the decrease of the resistance. The predicted drag coefficients verify that the present numerical calculation is reasonable.

Numerical Analysis of Laminar Flows in the Two Dimensional Sector Cavity by Finite Analytic Method in Polar Coordinate System (極座標系 有限解析法 에 의한 2次元 부채꼴 캐비티 의 層流流動 解析)

  • 배주찬;강신영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.185-194
    • /
    • 1984
  • The finite analytic method is extended to solve the steady two dimensional Navier-Stokes equation of stream functions and vorticity in polar coordinate system. The method is applied to calculate laminar flows in a sector cavity where the motion is induced by the rotation of the outer wall. Numerical solutions are obtained in the range of Reynolds number 0 to 5000 and aspect ratios 0.50, 1.20, 1.60 and 1.92. The finite analytic method is verfied to be accurate and fast convergent at high Reynolds numbers. It is promising as a numerical method of viscous flows and heat transfer. Flows in sector cavities show different flow structures and formation of secondary vortex with aspect ratios and Reynolds numbers in comparison with rectangular cavities.

Numerical Analysis and Control of Open Cavity Flow (열린 공동 유동의 수치적 모사 및 Jet Blowing 을 이용한 제어)

  • Chang, Kyung-Sik;Park, Seung-O;Choi, Hun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.101-108
    • /
    • 2002
  • A numerical simulation of an incompressible cavity flow is conducted. Two dimensional Navier-Stokes equations are integrated using staggered grid and a finite volume method with C-QUICK scheme for spatial derivatives and fully implicit scheme for the time derivatives. SIMPLE-C algorithm is employed to solve the pressure field. Computational results show that the third eddy is generated in the shear layer mode but not in the steady mode. This signifies that the third eddy plays an important role in cavity flow stability. As a means to control the flow, jet blowing is applied to a position below the cavity upstream edge. Effects of flow control parameters on the stability such as the frequency, the phase, and the velocity magnitude are reported.

Trim Range and Characteristics of Autorotation(I): Rotor Speed Limit and Pitch Range (자동회전의 트림 범위와 특성(I): 로터 스피드 한계와 피치범위)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-497
    • /
    • 2011
  • Numerical analysis has been performed to investigate the rotor speed and pitch range variations when the airspeed is increased in autorotation. Transient Simulation Method(TSM) was used to obtain the steady states of autorotation. The rotor blade was analyzed by the two-dimensional compressible Navier-Stokes solver in order to adapt to the airspeed increase and the results were used in the transient simulation method. Meanwhile, the Pitt/Peters inflow theory was used to supply the induced velocity fields. For the prescribed torque equilibrium state, the combinations of velocity, shaft angle, and pitch angle were produced to investigate the rotor speeds and variable ranges. The rotor tip Mach number and rotor speed were correlated and the trim range of pitch angle was observed with respect to the shaft angle decrease.

Aerodynamic Design of Helicopter Rotor Airfoil in Forward Flight Using Response Surface Method (반응표면법을 이용한 전진비행하는 헬리콥터 로터 에어포일의 공력설계)

  • Sun, Hyo-Sung;Lee, Soo-Gab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.13-18
    • /
    • 2004
  • This paper describes an efficient and robust optimization method for helicopter rotor airfoil design in forward flight. Navier-Stokes analysis was employed to compute the dynamic response of an airfoil, which simulates the unsteady rotor flow-field in forward flight. The optimization system consists of two categories; Response Surface Method to construct the response surface model based on D-optimal 3-level factorial design, and Genetic Algorithm to obtain the optimum solution of a defined objective function including penalty terms of constraints. The influence of design variables and their interactions on the aerodynamic performance was examined through the optimization process.

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.

Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions (수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • A passive control method of the interaction between a weak normal shock-wave and a turbulent boundary-layer was simulated using two-dimensional Navier-Stokes computations. The inflow Mach number just upstream of the normal shock wave was 1.33. A porous plate wall having a cavity underneath was used to control the shock-wave/turbulent boundary-layer interaction. The flows through the porous holes and inside the cavity were investigated to get a better understanding of the flow physics involved in this kind of passive control method. The present computations were validated by some recent wind tunnel tests. The results showed that downstream of the rear leg of the $\lambda$-shock wave the main stream inflows into the cavity, but upstream of the rear leg of the $\lambda$-shock wave the flow proceeds from the cavity toward to the main stream. The flow through the porous holes did not choke fur the present shock/boundary layer interaction.

  • PDF

Flow Analysis in the Fuel Chamber of Engine by Applying Turbulent Models (난류모형을 적용한 엔진 연료실의 유동해석)

  • Kwag Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.369-374
    • /
    • 2006
  • The flow analysis was made by applying the turbulent models in the complicated fuel chamber of engine. The $k-\varepsilon,\;k-\omega$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are simulated for the comparison of four example cases. Computational results are compared with others. For the code's validation, 2-D bodies were simulated in advance by predicting the drag coefficients.

The change of deflagration to detonation transition by wall cooling effect in ethylene-air mixture (에틸렌-공기 혼합물에서 벽면 온도 감소에 의한 연소폭발천이 현상 변화)

  • Gwak, Min-Cheol;Kim, ki-Hong;Yo, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.457-462
    • /
    • 2011
  • This paper presents a numerical investigation of deflagration to detonation transition (DDT) induced by shock wave and flame interaction in ethylene-air mixtures. Also shows the change of DDT triggering time by wall cooling effect. A model is consisted of the compressible reactive Navier-Stokes equations. And the effect of viscosity, thermal conduction, molecular diffusion, chemical reaction and wall effect are included. Using this model, the generation of hot spot by repeated shock and flame interaction, occurrence of detonation, and wall cooling effect of detonation confining boundaries are studied.

  • PDF

Development of Hydrodynamic Pressure Models with Velocity Projection Method (유속투사법을 이용한 동수압 모형의 개발)

  • Lee, Jin-Woo;Kim, Joo-Young;Lee, Jong-Kyu;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.52.2-52.2
    • /
    • 2010
  • 본 연구에서는 자유수면의 계산을 위해 동수압을 해석하는 수치모형을 제시하였다. 동수압과 자유수면을 고려하기 위해, 비점성 Navier-Stokes 방정식을 3단계로 나누어 해석하였다. 제1단계에서는 동수압과 자유수면을 전번 시간단계에서 계산된 값으로 대입하여 차분하였으며 이 차분식은 NGMRES(Newton-Generalized Minimal Residual) 방법을 이용해 음해적으로 해석되었다. 이때 계산된 유속장은 연속방정식을 고려하지 않았으므로 각 계산격자에서 질량보존법칙을 만족하지 않을 수도 있다. 제2단계에서 유속과 동수압 보정항으로 이루어진 식을 연속방정식에 대입하여 얻어지는 타원형 방정식인 동수압-포와송 방정식을 해석하므로 여기서 얻어지는 유속은 질량보존법칙을 만족하게 된다. 마지막 3 단계에서는 자유수면과 최종 유속을 계산하였다. 새로 개발된 수치모형을 검증하기위해 정사각형 탱크에서 수면의 자유 진동 문제에 적용한 결과 수치해는 해석해와 잘 일치하였다.

  • PDF