• 제목/요약/키워드: Navier Stokes

검색결과 2,176건 처리시간 0.038초

Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구 (A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME)

  • 조민우;양태호;권오준
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 II : 나비어스톡스 방정식 (Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, II : Navier-Stokes Equations)

  • 이상현
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.123-130
    • /
    • 2008
  • 예조건화 나비어스톡스 방정식의 수렴 특성에 미치는 특성 조건수의 영향을 조사하였다. Choi와 Merkle 예조건화를 적용한 경우와 온도 예조건화를 적용한 경우의 수렴 특성을 분석하였다. 공간차분을 위해 예조건화 Roe의 FDS 기법을 적용하였고, 시간적분을 위해 LU-SGS 기법을 적용하였다. 나비어스톡스 방정식의 수렴 특성은 특성 조건수에 크게 영향을 받으며, 최적의 특성 조건수가 존재하는 것을 보였다. 그리고 점성 유동의 최적 특성 조건수는 비점성 유동에 비해 큰 것으로 나타났다.

다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : II. 내재적 예조건자 (Convergence Study of the Multigrid Navier-Stokes Simulation : II. Implicit Preconditioners)

  • 김윤식;권장혁
    • 한국항공우주학회지
    • /
    • 제32권6호
    • /
    • pp.1-8
    • /
    • 2004
  • 본 연구는 다중 격자 Navier-Stokes 방정식 해석의 수렴성 향상을 그 목적으로 한다. 다중 격자 기법의 성능 향상을 위해 최근 많이 사용되고 있는 예조건화된 다단계 시간 전진 기법의 효율성 향상을 위한 연구를 수행하였다. 압축성 유동장 해석시 자주 이용되는 ADI 예조건자와 DDADI 예조건자의 수렴 특성 비교 연구를 수행하였다. 2차원 압축성 난류 유동장 해석에 적용함으로써 DDADI 예조건자가 ADI 예조건자에 비해 우수한 수렴특성을 가짐을 확인하였고, 이를 통하여 Fourier 해석을 통한 예조건화 특성 연구와 일치하는 수렴 특성을 확인하였다. Spalart-Allmaras(S-A) 난류 모델과 Baldwin-Lomax (B-L) 난류 모델의 적용을 통해 난류 모델에 따른 수렴성 비교를 수행하였다.

Navier-Stokes Simulation of Unsteady Rotor-Airframe Interaction with Momentum Source Method

  • Kim, Young-Hwa;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.125-133
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination as a whole. This often imposes a serious computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is to adopt a momentum source method in which the action of rotor is approximated as momentum source over a rotor disc plane in a stationary computational domain. This makes the simulation much simpler. For unsteady simulation, the instantaneous momentum sources are assigned only to a portion of disk plane corresponding to blade passage. The momentum source is obtained by using blade element theory with dynamic inflow model. Computations are carried out for the simple rotor-airframe model (the Georgia Tech model) and the results of the simulation are compared with those of the full Navier-Stokes simulation with moving mesh system for rotor and with experimental data. It is shown that the present simulation yields results as good as those of the full Navier-Stokes simulation.

삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver를 이용한 Immersed Boundary Method의 적용 (IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM)

  • 김건홍;박승오
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.44-53
    • /
    • 2012
  • Immersed boundary method(IBM) is a numerical scheme proposed to simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies, the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. The weight coefficients of the bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies. For an analysis of moving boundary, we smulated an oscillating circular cylinder with Re=100 and KC(Keulegan-Carpenter) number of 5. The predicted flow fields were compared with experimental data and they also showed good agreements.

스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구 (A Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis)

  • 홍성호;손상익;김경웅
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.218-232
    • /
    • 2012
  • In a spool valve analysis, the Reynolds equation is commonly used to investigate the lubrication characteristics. However, the validity of the Reynolds equation is questionable in a spool valve analysis because cavitation often occurs in the groove and the depth of the groove is much higher than the clearance in most cases. Therefore, the validity of the Reynolds equation in a spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and the Navier-Stokes equation. Dimensionless parameters are determined from a nondimensional form of the governing equations. The differences between the lateral force, friction force, and volume flow rate (leakage) obtained by the Reynolds equation and those obtained by the Navier-Stokes equation are discussed. It is shown that there is little difference (less than 10%), except in the case of a spool valve with many grooves where no cavitation occurs in the grooves. In most cases, the Reynolds equation is effective for a spool valve analysis under a no cavitation condition.

공기베어링에서의 선단압력발생에 관한 연구 (A Study on Inlet Pressure Build-up of Air-Lubricated Bearings)

  • 김성국;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.127-132
    • /
    • 1999
  • The inlet pressure build-up at the leading edge of bearings which have discontinuous lubrication surface is analyzed theoretically. The analyses of Inlet pressure build-up is obtained by means of full Navier-stokes equations. Beam-warming method is used to solve navier-stokes equations. The results show that inlet pressure is above atmosphere pressure in front of leading edge of hearing.

  • PDF

REGULARITY OF 3D NAVIER-STOKES EQUATIONS WITH SPECTRAL DECOMPOSITION

  • Jeong, Hyosuk
    • 호남수학학술지
    • /
    • 제38권3호
    • /
    • pp.583-592
    • /
    • 2016
  • In this paper, we consider the global existence of strong solutions to the incompressible Navier-Stokes equations on the cubic domain in $R^3$. While the global existence for arbitrary data remains as an important open problem, we here provide with some new observations on this matter. We in particular prove the global existence result when ${\Omega}$ is a cubic domain and initial and forcing functions are some linear combination of functions of at most two variables and the like by decomposing the spectral basis differently.

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.