• Title/Summary/Keyword: Naval weapon system modeling and Simulation

Search Result 5, Processing Time 0.023 seconds

A Study on the Design and Verification-Validation of the Supportive Equipment for Shipyard Test of Naval Combat System (함정 전투체계 함상시험을 위한 지원장비 설계 및 검증 연구)

  • Jung, Youngran;Kim, Cheolho;Han, Woonggie;Kim, Jaeick;Kim, Hyunsil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • The Shipyard Test of Naval Combat System depends on external factors, such as weather conditions and availability of its sensor-weapon, due to the need of on-board sensor-weapon during the test. This paper suggests the Supportive Equipment using virtual simulator for Shipward Test, in case of the unavailability of the on-board sensor-weapon or the test support force(aircraft, surface ship etc.), to pre-check the functions of the combat system as well as to prepare the Shipyard Test. To mock the real sensor-weapon functions as similar as possible, the Supportive Equipment for Shipyard Test was verified by the Verification and Validation process, which is usually performed while developing models in the Modeling & Simulation field.

Development of Underwater Warfare Models on the Naval Weapon Systems (해군무기체계 수중교전 모델 라이브러리 개발)

  • Han, Seungjin;Lee, Minkyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • ADD (Agency for Defense Development) has developed the naval warfare simulation environment (QUEST), this paper describes the model library of naval weapon systems for the application of underwater warfare simulation included in the QUEST. Models are basically developed in order to measure the effectiveness and tactical development of underwater engagement between ships and weapons. Analyzing the mission space of underwater engagement and the functionality of the legacy models, we define standards of the model structure and developed the model components. Each components are the well-defined environment, system, subsystem, algorithm models, and the interfaces are defined between them. Users can construct a model in an efficient way to various warfare scenarios using the re-usable model components and co-work with the common model library.

The Federation Development for Underwater Warfare Simulation (수중 교전 시뮬레이션을 위한 페더레이션 개발)

  • Shin, Ji-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.11-18
    • /
    • 2007
  • Recently, as weapon systems have been more diverse and complicated, the factors of risk increase in development. Consequently, demanding reduction of acquired costs and period increase. Under the acquisition environment, more efficiently to develop weapon system, the necessity of application of defense M&S from requirement phase is on the rise. As the importance of M&S is stressed under distributed environment, so the standard of M&S(HLA, SEDRIS, etc.) and the system engineering process, namely FEDEP(Federation Development & Execution Process) have been developed. In this paper using the 5 phase expression, we constructed underwater engagement simulation(UNES) that prototype to develop naval weapon system test bed which take up integrated architecture in HLA. we developed simulators according to FEDEP for expandability and described process applying FEDEP fur UNES development.

  • PDF

Effective Test and Evaluation Approaches for Reliable Defense Systems Development examined through Domestic Defense Cases (국내 사례로 살펴보는 국방체계 개발의 신뢰성을 높이기 위한 시험평가 방안)

  • Seo, Kyung-Min;Lee, Chan Young;Bang, Kyoung Woon;Lee, Dong Chul;Choi, Woo Young;Kim, Tag Gon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.127-134
    • /
    • 2016
  • This paper presents practical issues for test and evaluation(T&E) methods to develop defense systems. Our argument is motivated by several domestic defense cases and the cases lead us to discuss two main factors for reliable defense systems development: 1) statistical approaches and 2) technical schemes. Specifically, statistical approaches enable to provide credible interpretations about T&E results in the decision-making process. With practical T&E results of the “Red Shark” torpedo, we performed statistical hypothesis tests and suggest a minimum sample size to accept the hypothesis. Next, technical schemes have more direct effects on improving reliability of developed defense systems and we shortly introduce tools development for systems verification that is required to integrate several sub-systems, e.g., combat, sensor, weapon, and communication systems, within a defense system. We additionally summary some domain cases using modeling and simulation techniques for successful T&E. In closing, we expect that the paper shows empirical investigation and lessons learned with these two practical issues, which provides a guide those who desire to make decisions about reliable defense systems development.

A Study on the Application Model of High Availability of shipboard Combat Systems (함정 전투체계 고가용도 모델 적용에 관한 연구)

  • Lee, Kyoung-Haing;Han, Dong-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • This research has conducted high availability system modeling to assure the reliability of shipboard combat systems. Shipboard combat system is a way for efficient execution of duty and a crucial battlefield management system that determines the outcome of battle in the modern war. Especially in regard to a network-centric operational environment in the future, even 1% of malfunction can lead to fatal consequences for the outcome of war. So combat system should be designed by high availability system which is a "always-on" service. In this point of view, This work describes an architecture-based various high availability model and proposed alternative high available systems that can achieve more than 99.9999% accuracy at a minimum. This paper also provides an applicable model with which system engineers analyze out system failure and recovery process by employing computerized tools.