• Title/Summary/Keyword: Nature-Inspired Surface

Search Result 25, Processing Time 0.021 seconds

A response surface modelling approach for multi-objective optimization of composite plates

  • Kalita, Kanak;Dey, Partha;Joshi, Milan;Haldar, Salil
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.455-466
    • /
    • 2019
  • Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.

Investigation of the lotus leaf effect using the scanning probe microscopes (나노 측정기를 이용한 연잎효과 규명)

  • Lee, Ju-Hee;Lee, Dong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5756-5762
    • /
    • 2015
  • This paper has studied the lotus effect of the biomimetic engineering that is inspired from the nature. The biomimetic engineering has been improved with the nanotechnology. This paper has observed the hydrophobic property of the surface of the lotus leaf by using the scanning electron microscope (SEM) and atomic force microscope (AFM). The nano-scale of the hydrophobic lotus leaves are maximized the surface tension of water. The general grass leaf has been compared with the lotus leaf through the SEM and AFM - in the viewpoint of the 2D and 3D morphology. Also, The pre-existing of the hydrophobic theory was investigated and compared with the experimental observations for the lotus leaf.

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Yilmaz Guvercin;Sevval Ozturk;Murat Yaylaci
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.567-577
    • /
    • 2023
  • The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

A Study on the Russian Textile Design (러시아 텍스타일 디자인에 관한 연구 -혁명기를 중심으로-)

  • 이혜주
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.1
    • /
    • pp.25-38
    • /
    • 2000
  • This study focuses on the Russian Constructivist Textile Design in the post-revolutionary period, of the early 20th century. Russian textile of the time is highly valued in the west in terms of innovative changes in aesthetic directions, which has become one of the most important centers for the development of new textiles, or the origin of industrial design. Most of brilliant mass-production patterns were produced specially by the pioneers of constructivists such as Stepanova and Popova who were influenced by 'Maxism' through the Revolution regarded themselves as productivists for the proletariat. They were inspired by the avant-garde movements, which were involved with traditionalism, futuristic mechanism, stylization of nature, pure geometrical and abstract form. Early textile design was based on the relationship between the graphic methods of design and the technology because they regarded art as physical, intellectual and technical production. They created all the excitement made from the primary simplest forms of precise mathmatical shapes, such as the circle, the triangle, the rectangle and horizontle and vertical lines. These geometric design can be interpreted as the mechanization of the artists'labor, or methods in line with the technology of mass production, however partly roots in the rich tradition of Russian decorative art. On the other hand, stable crystalline construction on the surface reflect urban architectural complex, and the world of industry in graphic form. They were interested in illusion of movement, cinematic movement of vertical linear rhythms, optical formations and vibrations, by composing a multi-leveled constructions by several spatial planes, or color-field, and combining structures of several intersecting matrices, and superimposing parts of the forms on each other. All these characteristics of the Russian textile designs reflect the complex interactions between 'art and society' of Constructivist's idea and represent the traits of the epoch.

  • PDF