Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.4.455

A response surface modelling approach for multi-objective optimization of composite plates  

Kalita, Kanak (Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology)
Dey, Partha (Department of Mechanical Engineering, Academy of Technology)
Joshi, Milan (Department of Applied Science & Humanities, SVKM's NMIMS Mukesh Patel School of Technology Management & Engineering)
Haldar, Salil (Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering, Science and Technology)
Publication Information
Steel and Composite Structures / v.32, no.4, 2019 , pp. 455-466 More about this Journal
Abstract
Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.
Keywords
FE-surrogate; metamodel; multi-objective genetic algorithm (MOGA); multi-objective particle swarm optimization (MOPSO); pareto front;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kalita, K. and Haldar, S. (2017), "Eigenfrequencies of Simply Supported Taper Plates with cut-outs", Struct. Eng. Mech., Int. J., 63(1), 103-113. https://doi.org/10.12989/sem.2017.63.1.103
2 Kalita, K., Ramachandran, M., Raichurkar, P., Mokal, S.D. and Haldar, S. (2016), "Free vibration analysis of laminated composites by a nine node isoparametric plate bending element", Adv. Compos. Lett., 25(5), 108. https://doi.org/10.1177/096369351602500501
3 Kalita, K., Shivakoti, I. and Ghadai, R.K. (2017), "Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization", Mater. Manuf. Process., 32(10), 1101-1108. https://doi.org/10.1080/10426914.2017.1303156   DOI
4 Kalita, K., Dey, P. and Haldar, S. (2019a), "Robust genetically optimized skew laminates", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(1), 146-159. https://doi.org/10.1177/0954406218756943   DOI
5 Kalita, K., Dey, P. and Haldar, S. (2019b), "Search for accurate RSM metamodels for structural engineering", J. Reinforced Plast. Compos. https://doi.org/10.1177/0731684419862346
6 Kim, D., Kim, D.H., Cui, J., Seo, H.Y. and Lee, Y.H. (2009), "Iterative neural network strategy for static model identification of an FRP deck", Steel Compos. Struct., Int. J., 9(5), 445-455. https://doi.org/10.12989/scs.2009.9.5.445   DOI
7 Mills, K.L., Filliben, J.J. and Haines, A.L. (2015), "Determining relative importance and effective settings for genetic algorithm control parameters", Evolut. Computat., 23(2), 309-342. https://doi.org/10.1162/EVCO_a_00137   DOI
8 Mukhopadhyay, T., Dey, T.K., Chowdhury, R. and Chakrabarti, A. (2015), "Structural damage identification using response surface based multi-objective optimization: a comparative study", Arab. J. Sci. Eng., 40, 1027-1044. https://doi.org/10.1007/s13369-015-1591-3   DOI
9 Pan, S.-S., Lei, S., Tan, Y.-G. and Zhang, Z. (2011), "Reliability analysis for lateral stability of tongwamen bridge", Steel Compos. Struct., Int. J., 11(5), 423-434. https://doi.org/10.12989/scs.2011.11.5.423   DOI
10 Pajunen, S. and Heinonen, O. (2014), "Automatic design of marine structures by using successive response surface method", Struct. Multidiscipl. Optimiz., 49(5), 863-871. https://doi.org/10.1007/s00158-013-1013-7   DOI
11 Ragavendran, U., Ghadai, R.K., Bhoi, A.K., Ramachandran, M. and Kalita, K. (2018), "Sensitivity analysis and optimization of EDM process", Transact. Can. Soc. Mech. Eng., 43(1), 13-25. https://doi.org/10.1139/tcsme-2018-0021   DOI
12 Shooshtari, A. and Razavi, S. (2010), "A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates", Compos. Struct., 92(11), 2663-2675. https://doi.org/10.1016/j.compstruct.2010.04.001   DOI
13 Consonni, V., Ballabio, D. and Todeschini, R. (2010), "Evaluation of model predictive ability by external validation techniques", J. Chemomet., 24, 194-201. https://doi.org/10.1002/cem.1290   DOI
14 Abachizadeh, M. and Tahani, M. (2009), "An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost", Struct. Multidiscipl. Optimiz., 37(4), 367-376. https://doi.org/10.1007/s00158-008-0235-6   DOI
15 Abu-Odeh, A.Y. and Jones, H.L. (1998), "Optimum design of composite plates using response surface method", Compos. Struct., 43(3), 233-242. https://doi.org/10.1016/S0263-8223(98)00109-3   DOI
16 Boussaid, I., Lepagnot, J. and Siarry, P. (2013), "A survey on optimization metaheuristics", Info. Sci., 237, 82-117. https://doi.org/10.1016/j.ins.2013.02.041   DOI
17 Box, G.E. (1964), "An analysis of transformations", J. Royal Statist. Soc. Series B (Methodological), 26, 211-252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x   DOI
18 Box, G.E. and Wilson, K.B. (1992), "On the experimental attainment of optimum conditions", In: Breakthroughs in Statistics, Springer, pp. 270-310.
19 De Jong, K. (2007), Parameter setting in EAs: a 30 year perspective, Berlin, Heidelberg: Springer.
20 Dey, S., Mukhopadhyay, T., Khodaparast, H.H. and Adhikari, S. (2016), "A response surface modelling approach for resonance driven reliability based optimization of composite shells", Periodica Polytechnica. Civil Eng., 60(1), 103. https://doi.org/10.3311/PPci.8073
21 Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS'95, pp. 39-43. https://doi.org/10.1109/MHS.1995.494215
22 Hardy, R.L. (1971), "Multiquadric equations of topography and other irregular surfaces", J. Geophys. Res., 76(8), 1905-1915. https://doi.org/10.1029/JB076i008p01905   DOI
23 Fang, Y. and Tee, K.F. (2017), "Structural reliability analysis using response surface method with improved genetic algorithm", Struct. Eng. Mech., Int. J., 62(2), 139-142. https://doi.org/10.12989/sem.2017.62.2.139   DOI
24 Ganguli, R. (2002), "Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods", J. Sound Vib., 258(2), 327-344. https://doi.org/10.1006/jsvi.2002.5179   DOI
25 Goldberg, D.E. (2006), Genetic Algorithms, New Delhi: Pearson Education India.
26 Haykin, S.S. (2001), Neural networks: a comprehensive foundation, Prentice Hall PTR.
27 Heinonen, O. and Pajunen, S. (2011), "Optimal design of stiffened plate using metamodeling techniques", J. Struct. Mech., 44(3), 218-230.
28 Jakob, W. and Blume, C. (2014), "Pareto optimization or cascaded weighted sum: A comparison of concepts", Algorithms, 7(1), 166-185. https://doi.org/10.3390/a7010166   DOI
29 Ju, S., Shenoi, R.A., Jiang, D. and Sobey, A.J. (2013), "Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology", Compos. Struct., 97, 107-116. https://doi.org/10.1016/j.compstruct.2012.10.025   DOI