• 제목/요약/키워드: Nature Element

검색결과 473건 처리시간 0.022초

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

강체모재들을 결합하고 있는 점탄성 접착재층의 계면모서리에서 발생하는 응력특이성의 경제요소해석 (Boundary Element Analysis of Stress Singularity at the Interface Corner of Viscoelastic Adhesive Layer Bonded Between Rigid Adherends)

  • 이상순;박준수
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.131-138
    • /
    • 1997
  • 이 논문에서는, 균일한 횡방향 인장변형률이 작용하는 조건에서 강체모재들을 결합하고 있는 점탄성 접착재층의 계면모서리에 발생하는 응력 특이성을 조사하고있다. Williams방법을 응용하여 라플라스 변형공간에서 특성방정식을 구하였고, 주어진 점탄성 모델에 대해서 변형공간에서의 특성방정식을 시간공간으로 해석적으로 전환하였다. 시간 공간에서의 특이차수는 수치적으로 계산하였다. 계면을 따라 발생하는 응력의 특성을 조사하는데 시간영역 경계요소법을 적용하였다. 수치해석 결과에 의하면, 특이차수는 시간이 경과함에 따라 커지는 반면에, 자유모서리 응력확대계수는 시간에 따라 이완되는 특성을 보여주고 있다.

  • PDF

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M.;Mamazizi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.379-394
    • /
    • 2022
  • Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

사암침법(舍巖鍼法)의 변형(變形)에 관(關)한 연구(硏究) (The Study on The variational Forms of Sa-Ahm's 5 Element Acupuncture Method)

  • 김달호;김중한
    • 한국한의학연구원논문집
    • /
    • 제2권1호
    • /
    • pp.337-380
    • /
    • 1996
  • 'Nei Jing(內徑)' first defined the interrelationship of the true and tile false between evil factor affecting health(雅氣) and vital essence energy(精氣). According to 「'Nei Jing(內徑)', the above interrelationship is explained as 'If state of evil domination is considered as sthenia-syndrome(雅氣盛則實), if the consumption of healthy energy Is considered as asenia-syndrome(精氣尊則虛): 'Nei Jing(內徑)', proposed major features of the medicall treatment by 'regluate the vatal energy of asthenia and sthenia, treat the sthenia-syndrome by purgation, and treat the asenia-syndrome by therapy of invigoration(調其氣之虛實, 實則瀉之, 虛則補之): The above interrelationship was interpreted as 'treat the asthenia-syndrome of child organ by invigorating the mother organ(虛者補其母)'in the 69th of 'The Classic on Difficulty',(難經 六十九難). Go-Mu(高武) of Myung-dynasty describe therapy for invigoration and purgation of itself-meridian(自經 補瀉法), which locating acupuncture points according to the Therorr of Five Element in the five shu points of itself-meridian(自經 五유穴), based on the generation in the ${\ulcorner}$A Synthetical Book of Acupuncture and Moxibustion(針灸聚英)${\lrcorner}$, Sae-hyun Jang(張世賢) further extended location acupuncture points of the five shu points to the other-meridian in the ${\ulcorner}$Gyeo Jung Do Ju Nan Gyung(校正圖註難經)${\lrcorner}$ Sa-Ahm's 5 Element Acupuncture Method(舍嚴五行鍼法) was originated in 1644, the middle of the Yi-dynasty. It linked the reinforcing and reducing in acupuncture therapy which incorporated tlle asthenia-syndrome and sthenia-syndrome of the hollow organs, based on principle of the Yin Yang 5 Element Theory(陰陽五行學說), not only to the generation in the 5 element(相生關係) but also to the restriction in the 5 element(相剋關係). Furthermore it was devised for the medical treatment by comning therapy for invigoration and purgation of itself-meridian(自經 補瀉法) with that of the other-meridian. Even though many original forms(正形) of the therapy for invigoration and purgation of the Yin Yang 5 Element Theory comply with the principle of the generation and the restriction based on the principle of the Yin Yang 5 Element Theory are abailable, variational forms(變形) are also recognized by examining the nature of the Sa-Ahm's 5 Element Acupuncture Method(舍嚴五行鍼法), For this reason, it is very difficult to understand the Sa-Ahm's 5 Element Acupuncture Method(舍嚴五行鍼法) thoroughly. therefore, those variational forms are obstacles for the beginners to study the Sa-Ahm's 5 Element Acupuncture Method. In order to understand the principle of the practical clinical application of the Sa-Ahm's 5 Element Acupuncture Method, this study investigated which principle was based on the variations of the locating acupuncture points' method for the acupuncture prescription.

  • PDF

Behavior of tension lap spliced sustainable concrete flexural members

  • Al-Azzawi, Adel A.;Daud, Raid A.;Daud, Sultan A.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.83-92
    • /
    • 2020
  • The use of spliced reinforcing bars in sustainable concrete members to manage inadequate bars length is a common practical issue which is may be due to some limitations. The lap splicing means two bars overlapped in parallel with specified length called the splice length in order to provide the required bond between the two bars. The bond between sustainable concrete and spliced steel bars is another important issue. The normal strength sustainable concrete specimens of sizes 1700×150×150 mm with tension reinforcement lap spliced were selected according to testing device length limitations. These members were designed to fail in flexure in order to investigate the lap spliced tension bars effect. The selected lap spliced tension bars were of 10 mm size with smooth and deformed surfaces in order to investigate the surface nature accompanied with the splice nature. The sustainable concrete mechanical properties and mix workability were also studied. This study reveals that the effect of number of spliced bars on the response of beams reinforced with smooth bars is found to be more obvious than deformed one. Finite element modeling in three dimensions was carried out for the tested beams using ABAQUS software. A parametric study is carried out using finite elements on considering the following parameters, concrete compressive strength, load type and opening in cross section (hollow section) for weight reduction purposes.The laboratory and numerical results show good agreements in terms of ultimate load and deflection with an average difference of 10% and 15% in ultimate load and deflection respectively.

신경건축학적 요소 적용을 위한 체크리스트 개발 연구 - 의료공간을 중심으로 (A Development of Checklist for Applying Neuro Architecture Factors - Focused on Medical space)

  • 노태린;서수경
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제26권2호
    • /
    • pp.63-69
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the neuro architecture items and detailed elements that can be considered for each detailed space in the future medical space design development through the development of a checklist of neuro architecture elements that can be utilized in medical space design. Methods:: This study first develops the neuro architecture element through theoretical research and prepares the basic plan for the checklist through consultation with the employees of the design company in which the researcher works. Finally, a checklist was developed through a survey of nine experts, including designers, hospital staff, and professors. Results: The result of this study 1) The neuro architecture component was developed in seven categories: light, color, sound, air, image, nature, ergonomic furniture and equipment. 2) Specifically, it consists of 49 elements including 7 light elements, 7 color elements, 5 sound elements, 4 air elements, 11 image elements, 6 elements in nature, 9 elements in ergonomic furniture and equipment. It was. 3) Although each of the detailed elements is more preferred according to the space, in general, all the elements should be considered in the context of the hospital space design. Implications: The checklist on the neuro architecture element will enable the development of the most faithful design as an efficient and useful tool for applying the neuro architecture philosophy that considers human beings in hospital design and pursues healing and happiness.

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.