• Title/Summary/Keyword: Natural material

Search Result 3,462, Processing Time 0.033 seconds

A Study on the Original Landscape for the Restoration and Maintenance of Buyongjeong and Juhamnu Areas in Changdeokgung Palace (창덕궁 부용정과 주합루 권역의 복원정비를 위한 원형 경관 고찰)

  • Oh, Jun-Young;Yang, Ki-Cheol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.24-37
    • /
    • 2021
  • This study was conducted to newly examine the original landscape of Buyongjeong(芙蓉亭) and Juhamnu(宙合樓) areas in Changdeokgung Palace(昌德宮), focusing on the modern period including the Korean Empire, and to derive useful research results for restoration and maintenance in the future. The study results can be summarized as follows. First, the artificial island in Buyongji(芙蓉池) was originally made up of a straight layer using well-trimmed processed stone. However, during the maintenance work in the 1960s and 1970s, the artificial island in Buyongji was transformed into a mixture of natural and processed stones. The handrail installed on the upper part of the artificial island in Buyongji is a unique facility that is hard to find similar cases. The handrail existed even during the Korean Empire, but was completely destroyed during the Japanese colonial period. Second, Chwibyeong(翠屛), which is currently located on the left and right of Eosumun(魚水門), is the result of a reproduction based on Northern bamboo in 2008. Although there is a view that sees the plant material of Eosumun Chwibyeong as Rigid-branch yew, the specific species is still vague. Looking at the related data and circumstances from various angles, at least in the modern era, it is highly probable that the Eosumun Chwibyeong was made of Chinese juniper like Donggwanwangmyo Shrine(東關王廟) and Guncheongung(乾淸宮) in Gyeongbokgung Palace(景福宮). Third, the backyard of Juhamnu was a space with no dense trees on top of a stone staircase-shaped structure. The stone stairway in the backyard of Juhamnu was maintained in a relatively open form, and it also functioned as a space to pass through the surrounding buildings. However, as large-scale planting work was carried out in the late 1980s, the backyard of Juhamnu was maintained in the same shape as a Terraced Flower Bed, and it was transformed into a closed space where many flowering plants were planted. Fourth, Yeonghwadang Namhaenggak(暎花堂 南行閣), which had a library function like Gyujanggak(奎章閣) and Gaeyuwa(皆有窩), was destroyed in the late 1900s and was difficult to understand in its original form. Based on modern photographs and sketch materials, this study confirmed the arrangement axis of Yeonghwadang Namhaenggak, and confirmed the shape and design features of the building. In addition, an estimated restoration map referring to 「Donggwoldo(東闕圖)」 and 「Donggwoldohyung(東闕圓形)」 was presented for the construction of basic data.

Usages and Religious Takes on the Concept of Haewon (해원 개념의 용례와 종교적 전환)

  • Ko, Byoung-chul
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.39
    • /
    • pp.1-32
    • /
    • 2021
  • The purpose of this article is to explain the conceptual changes that the notion of Haewon (解冤) has undergone by examining the evolution of the usages of Haewon. In order to achieve this purpose, I reviewed the conceptual connotations and denotations of Haewon contained in data from the Joseon Dynasty (Section 2), the Japanese colonial period (Section 3), and the scriptures and major preceding research of Daesoon Jinrihoe (Section 4). The research results described in this article are as follows. First, Haewon is a term with historical, social, and cultural characteristics. This means that Haewon, a term that has been used since the Joseon Dynasty, was a concept used to solve collective problems but could also be applied on the individual level. This further means that, if culture is regarded as a collective consciousness or as a collection of material products, Haewon would be a term that contained social and cultural aspirations. Second, Haewon is not a concept that has been impervious to innovation throughout its history. This can be confirmed by the fact that Haewon's scope of application has changed depending on the problem domain (legal, natural disasters, an institutional domain, etc.). Third, Haewon has converted into religious language a doctrinal system that came about after the emergence of Jeungsan. This means that previously the concept of Haewon was mainly used at the legal level in the Joseon Dynasty, but after the emergence of Jeungsan, it became a term in religious language and in doctrine. The materials of Daesoon Jinrihoe show that this concept of Haewon was expanded to be included at the doctrinal level. These research results show a historical shift in the ideological thought contained in the concept of Haewon. As a term in religious language that is included in a doctrinal system, Haewon has an extension of denotations that is applied to the world beyond individuals and societies, yet it maintains connotations of resolving grievances. This concept of Haewon mediates the transformation of the world and creates a rationale by which training and ethical practice are necessary components of that process of transformation.

Production of doubled haploid population derived from the microspore culture of rapeseed (Brassica napus L.) F1 generation and analysis of fatty acid composition (유채 잡종 1세대의 소포자 배양에 의한 배가반수체 집단 선발 및 지방산 조성 분석)

  • Lee, Ji Eun;Park, Ju Hyun;Kim, Kwang Soo;An, Da Hee;Cha, Young Lok
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.74-81
    • /
    • 2022
  • Brassica napus, an oil crop that produces rapeseed oil, is an allotetraploid (AACC, 2n = 38) produced by natural hybridization between B. rapa and B. oleracea. In this study, microspore was cultured using the F1 developed from a cross between 'EMS26' line with high oleic acid content and 'J8634-B-30' lines. The flower bud size showing the nuclear development at the late uninucleate and binucleate stage with high embryogenesis rate was 2.6 ~ 3.5 mm. Microspores were cultured using only this size and after then most microspore embryo developed into secondary embryos and then regeneration plants obtained from the developed multilobe. The analysis of the ploidy of the plants revealed that 66.7% and 27.8% of the total lines were tetraploids and octoploids, respectively. The sizes of stomatal cells in tetraploids, octoploids, and diploids were 25.5, 35.6, and 19.9 ㎛, respectively, indicating that ploidy level was positively correlated with cell size. Furthermore, 62 tetraploid doubled haploid (DH) lines were selected. The average oleic acid (C18:1) and linolenic acid (C18:3) concentrations of DH were 72.3% and 6.2%, respectively. Oleic acid and linolenic acid concentrations exceeded the two parental values in 5 and 14 DH lines, respectively, suggesting that these two fatty acids had transgressive segregation. Therefore, the DH population can be utilized for the biosynthesis of unsaturated fatty acids in rapeseed and related genes. It can also be used as a breeding material for varieties with high oleic acid concentrations.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.

Analysis of Research Trends Related to Forest Play: Focusing on Domestic Dissertations (숲놀이 관련 연구 동향 분석: 국내 학위 논문 중심으로)

  • Kim, Minjung
    • Journal of Christian Education in Korea
    • /
    • v.69
    • /
    • pp.77-104
    • /
    • 2022
  • The purpose of this study was to investigate the research trend of forest play. The purpose of this study is to provide basic data for the vitalization of forest play research by analyzing the research period, research content, and research methods. For this study, 57 domestic master's and doctoral dissertations were extracted through the National Assembly Library and the Research Information Sharing Service(RISS) with the keywords of 'forest', 'play', and 'forest play'. The frequency and percentage were calculated by analyzing forest play research based on four criteria: research period, research content, research method, and research subject. As a result of the research, first, the trend of forest play research by period is from 2011 to 2021, with 49 articles (85.9%) for master's degrees and 8 articles (14.1%) for doctor's degrees. Second, the trend by research content was found to be 16 basic studies (28.1%) and 41 practical studies (71.9%). Forest play research is being actively conducted centered on practical research. Third, the trends by research method were in the order of 39 quantitative studies (68.4%), 17 qualitative studies (29.8%), and 1 literature study (1.8%). Forest play research is focused on quantitative research, and comparatively qualitative research and literature research account for a low proportion. Fourth, the trend by study subject was 56 single subject studies (98.2%). The single subjects were 52 children (91.2%), 3 teachers (5.2%), and 1 parent (1.8%). As for the mixed subjects, there is one study (1.8%) targeting children and parents, and it is necessary to conduct a study with mixed subjects. As for the study of material subjects, 42 articles (73.7%) in the natural environment, 13 articles (22.8%) in educational institutions, and 2 articles (3.5%) in the media were found in the order. Research on the home environment related to forest play is insufficient, so research on parents, children-parents, and home environment related to forest play should be conducted in the future.

Antioxidant and Antiwrinkle Effects of Persimmon Leaves extract (시엽(Persimmon Leaves) 에탄올 추출물의 항산화와 항주름 효과)

  • Sung-Hee Kim;Dong-Hee Kim;Wi-Hye Yeon;Jin-Tae Lee;Young-Ah Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.534-546
    • /
    • 2023
  • In this study, we investigated the antioxidant and anti-winkle activity in human fibroblast cell (CCD-986sk) of Persimmon Leaves (PL) as a cosmetic ingredient. As a result of investigating antioxidant activity through electron-donating ability and ABTS+ radical scavenging assay, the PL showed concentration-dependent antioxidant activity similar to ascorbic acid, a control group, at a concentration of 1,000 ㎍/ml. As a result of investigating the anti-wrinkle effect through elastase inhibition and collagenase inhibition assay, the PL showed concentration-dependent antioxidant activity similar to epigallocatechin gallate, a control group, at a concentration of 1,000 ㎍/ml. As a result of measuring the synthesis rate of pro-collagen type I and the inhibition rate of MMP-1 in UVB-induced CCD-986sk cells, the control group EGCG showed a 90.2% pro-collagen synthesis rate at 20 ㎍/ml and PL showed an 88.5% synthesis rate at 30 ㎍/ml. In addition, the inhibition rate of MMP-1 of 33.0% and 40.8% were confirmed in EGCG 20 ㎍/ml and PL 30 ㎍/ml, respectively. As a result of measuring the protein expression of pro-collagen type I and MMP-1 in the PL through western blot, it was confirmed that the protein expression of pro-collagen type I increased, and MMP-1 decreased when the PL was treated together compared to the UVB alone group. According to the above experimental results, it is expected to be used as a natural product material for cosmetics by confirming that the PL prevent photoaging caused by UVB stimulation and have antioxidant and anti-wrinkle effects.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

A Study on the Gwanbang forest of Ganghwa in the Joseon Dynasty Period (조선시대 강화지역 관방림(關防林)의 특성 연구)

  • Shim, Sun-Hui;Lee Jae-Yong;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • This study investigated and analyzed ancient records on the type, planting background, and construction process of Gwanbang forest(關防林) planned for military defense during the Joseon Dynasty to find out the purpose, location, and planting species of Gwanbang forest. The research results were as follows. During the Joseon Dynasty, Gwanbang forests were created around various government facilities(關防施設), such as Eupseong(邑城), major government offices, camps, and fortifications, for the purpose of defending against enemies. Gwanbang forest includes Yeongaeglim(嶺阨林), which was created on the crest of a strategically important hill, and Military Forest created for military purposes. Most of the spirit forest was designated as Geumsan(禁山) and protected and managed, and the Gwanbang forest was created for various purposes such as shielding, flood damage and river bank erosion prevention as well as external defense. In addition, in order to continuously and efficiently produce wood, which is a material for ships, buildings, and agricultural tools, in most cases, large areas were created as mixed forests. As for the species constituting the Gwanbang forest, there are records of tangerine tree, which is effective for defense because it has thorns, and deciduous broad-leaved trees such as zelkova, elm, willow, david hemiptelea, and oak appear. In the case of Ganghwa island, which served as the defense of the capital and the royal family during the Joseon Dynasty, several records have confirmed that a forest densely planted with trifoliate orange was created for the purpose of Gwanbang forest to reinforce the defense of the outer fortress. Based on historical research in the literature, assuming that the natural monument 'Gapgotri tangerine tree in Ganghwa Island' was planted in the 30th year of King Sukjong(1704), the first record of planting trifoliate orange in Ganghwa Island, the maximum age is estimated to be more than 319 years.

Analysis of Paint Used for a Helicopter Operated in the Korean War through the History of Paint Application (페인트 도장의 역사를 통해 본 6·25전쟁 운용 헬기의 도료분석)

  • Kang Hyunsam;Jang Hanul;Choi Yangho
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.133-152
    • /
    • 2023
  • This study references preceding studies to examine the history of paint application techniques using various paints in the past, with the aim to contribute to the long-term preservation of large military cultural heritage assets situated outdoors. To this end, the study compared the findings of preceding research with the findings of an analysis conducted on a H-13 helicopter housed at the War Memorial of Korea. Upon collecting and analyzing samples from three grounded WWII aircraft from above-ground by preceding studies, it was confirmed from each sample that the various chemical properties of chrome ensured the effectiveness of the protective coating. The compound was first tested as a corrosion-inhibiting pigment in the early 1940s and proved its excellent moisture-resistant properties over the course of 80 years, despite the deterioration of the paint layer and long-term exposure to the natural environment. For this reason, it has been widely used as a corrosion inhibitor for aluminum alloys in the aviation industry. In other word, the most widely-used material for preventing corrosion was an organic primer containing chromate. In this study, based on the paint analysis of a H-13 helicopter operated in the Korean War, it was shown that the second layer, consisting of the primer, contains chromium oxide (Cr2O3). In addition, it was estimated that red lead tetraoxide (Pb3O4) was used for the vehicle. Analysis results and data from previous studies can help to confirm the continued effectiveness of corrosion prevention function provided by chromate. Meanwhile, the result of infrared spectroscopy analysis confirmed the use of alkyd resin. In the future, comparisons with a more diverse range of artifacts will allow the identification of changes in the manufacturing technology of paints used to protect alloys from corrosion.