DOI QR코드

DOI QR Code

Production of doubled haploid population derived from the microspore culture of rapeseed (Brassica napus L.) F1 generation and analysis of fatty acid composition

유채 잡종 1세대의 소포자 배양에 의한 배가반수체 집단 선발 및 지방산 조성 분석

  • Lee, Ji Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Park, Ju Hyun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Kim, Kwang Soo (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • An, Da Hee (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Cha, Young Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
  • 이지은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 박주현 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 김광수 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 안다희 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Received : 2021.11.20
  • Accepted : 2021.12.24
  • Published : 2022.03.31

Abstract

Brassica napus, an oil crop that produces rapeseed oil, is an allotetraploid (AACC, 2n = 38) produced by natural hybridization between B. rapa and B. oleracea. In this study, microspore was cultured using the F1 developed from a cross between 'EMS26' line with high oleic acid content and 'J8634-B-30' lines. The flower bud size showing the nuclear development at the late uninucleate and binucleate stage with high embryogenesis rate was 2.6 ~ 3.5 mm. Microspores were cultured using only this size and after then most microspore embryo developed into secondary embryos and then regeneration plants obtained from the developed multilobe. The analysis of the ploidy of the plants revealed that 66.7% and 27.8% of the total lines were tetraploids and octoploids, respectively. The sizes of stomatal cells in tetraploids, octoploids, and diploids were 25.5, 35.6, and 19.9 ㎛, respectively, indicating that ploidy level was positively correlated with cell size. Furthermore, 62 tetraploid doubled haploid (DH) lines were selected. The average oleic acid (C18:1) and linolenic acid (C18:3) concentrations of DH were 72.3% and 6.2%, respectively. Oleic acid and linolenic acid concentrations exceeded the two parental values in 5 and 14 DH lines, respectively, suggesting that these two fatty acids had transgressive segregation. Therefore, the DH population can be utilized for the biosynthesis of unsaturated fatty acids in rapeseed and related genes. It can also be used as a breeding material for varieties with high oleic acid concentrations.

유채(Brassica napus)는 배추와 양배추의 자연 교잡에 의해 만들어진 이질사배체 작물(AACC, 2n = 38)로, 유채유를 생산하는 기름 작물이다. 본 연구에서는 올레산 함량이 높은 유채 EMS26 계통과 J8634-B-30 계통의 잡종 1세대 소포자를 이용하여 배양을 실시하였고, 재분화 식물체의 배수성을 검정하고 배가반수체 집단을 선발하여 C18 지방산 조성을 분석하였다. 먼저 꽃봉오리의 크기에 따른 소포자 발달 단계를 확인하였으며, 소포자 배 발생 효율이 높은 1핵기 말과 2핵기 발달 단계를 보이는 꽃봉오리 크기는 2.6 ~ 3.5 mm였다. 본 크기의 꽃봉오리만을 이용하여 소포자 배양을 실시하였으며, 배양 10일 후에 구형배와 심장형배가 관찰되었다. 소포자배는 캘러스를 형성하여 2차배로 발달하였으며, 이후 발달된 multilobe로부터 108 계통의 재분화 식물체를 획득하였다. 재분화된 식물체의 배수성은 4배체가 66.7% (72계통)로 다수였으며, 8배체는 27.8% (30계통), 그리고 2배체는 5.6% (6계통)로 확인되었다. 각 배수성에 따른 기공 세포의 크기는 4배체, 8배체, 2배체 각각 25.5 ㎛, 35.6 ㎛, 19.9 ㎛로 나타나, 배수성과 세포 크기는 정의 상관관계를 보였다. 이중 4배체 배가반수체 식물체 62계통을 선별하여 지방산 조성을 분석한 결과, 평균 올레산(C18:1) 함량은 72.3%, 리놀레산(C18:2) 11.8%, 리놀렌산(C18:3) 6.2%로 나타났다. 특히 올레산 함량이 가장 높은 계통은 DH22 계통으로 77.6%였으며, 리놀렌산 함량은 DH19계통에서 13.4%로 가장 높았다. 또한 모부본 보다 높은 올레산과 리놀렌산 함량을 보이는 계통은 각각 5개와 14개로 초월 분리(Transgressive segregation) 현상을 보였다. 이렇게 확보된 배가반수체 유전 집단은 유채의 불포화 지방산 생합성 기작 및 관련 유전자 탐색에 활용 가능하며, 올레산 함유량이 높은 계통들은 고품질 유채유 생산 품종 육종 소재로 활용 될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 작물시험연구사업(과제번호: PJ01433201)의 지원에 의해 수행되었다.

References

  1. Atri C, Banga S (2016) A protocol for flow cytometric determination of expected chromosome number of Brassica juncea L. introgression lines. Journal of Oilseed Brassica 1(2):170-174
  2. Browse J, Spychalla J, Okuley J, Lightner J (1998) Altering the Fatty Acid Composition of Vegetable Oils. NY: Cambridge University Press. New York
  3. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950-953 https://doi.org/10.1126/science.1253435
  4. Chang NW, Huang PC (1998) Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 33(5):481-487 https://doi.org/10.1007/s11745-998-0231-9
  5. Datta SK (2001) Current trends in the embryology of angiosperms, Springer. pp 471-488
  6. Forster BP, Thomas WT (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57-88
  7. Gacek K, Bayer PE, Bartkowiak-Broda I, Szala L, Bocianowski J, Edwards D, Batley J (2017) Genome-wide association study of genetic control of seed fatty acid biosynthesis in Brassica napus. Frontiers in Plant Science 7:2062
  8. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204(4957):497-497 https://doi.org/10.1038/204497a0
  9. Hofer M (2004) In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Reports 22(6):365-370 https://doi.org/10.1007/s00299-003-0701-y
  10. Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theoretical and Applied Genetics 113(3):497-507 https://doi.org/10.1007/s00122-006-0315-1
  11. Jang YS, Min K, Oh Y, Chung D (1997) Comparisons of developmental stages of microspore by bud size and embryogenesis from its microspore in Brassica species. Korean J Breed 29(4):480-485
  12. Javidfar F, Ripley V, Roslinsky V, Zeinali H, Abdmishani C (2006) Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus). Plant Breeding 125(1):65-71 https://doi.org/10.1111/j.1439-0523.2006.01187.x
  13. Keller W, Armstrong K (1979) Stimulation of embryogenesis and haploid production in Brassica campestris anther cultures by elevated temperature treatments. Theoretical and Applied Genetics 55(2):65-67 https://doi.org/10.1007/bf00285191
  14. Kim JS, Seo MS, Moon MS, Won SY, Kwon SJ (2019) Insight on doubled haploid production with an amphidiploid species 'Dolsangat' in Brassica Juncea. Korean Society of Breeding Science 51(4):341-350 https://doi.org/10.9787/KJBS.2019.51.4.341
  15. Kim KS, Lee YH, Cho HJ, Jang YS, Park KG (2012) Effects of culture condition on embryogenesis in microspore culture of Brassica napus L. domestic cultivar 'Tammiyuchae'. Korean Journal of Crop Science 57(4):317-323 https://doi.org/10.7740/KJCS.2012.57.4.317
  16. Kim KS, Li MY, Jang YS, Park YJ, Bang JK (2008) Production of haploids from proton ion and gamma-ray irradiation treated M2 generation of isolated microspores in Brassica napus L. ssp. oleifera. Korean Journal of Crop Science 53(2):150-155
  17. Kyo M, Harada H (1985) Studies on conditions for cell division and embryogenesis in isolated pollen culture of Nicotiana rustica. Plant physiology 79(1):90-94 https://doi.org/10.1104/pp.79.1.90
  18. Lee TS, Lee YH, Kim KS, Lee HK, Jang YS, Choi IH, Kim KS (2014) Effect of sowing time on oil content and fatty acid composition characteristics in rapeseed cultivars. Korean Journal of Plant Resources 27(2):202-208 https://doi.org/10.7732/KJPR.2014.27.2.202
  19. Licher R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift fur Pflanzenphysiologie 105(5):427-434 https://doi.org/10.1016/S0044-328X(82)80040-8
  20. Long W, Hu M, Gao J, Chen S, Zhang J, Cheng L, Pu H (2018) Identification and functional analysis of two new mutant BnFAD2 alleles that confer elevated oleic acid content in rapeseed. Frontiers in Genetics 9:399 https://doi.org/10.3389/fgene.2018.00399
  21. Mohammadi PP, Moieni A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.). Plant Cell, Tissue and Organ Culture (PCTOC) 108(2):251-256 https://doi.org/10.1007/s11240-011-0036-2
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Na H, Kwak JH, Chun C (2011) The effects of plant growth regulators, activated charcoal, and AgNO3 on microspore derived embryo formation in broccoli (Brassica oleracea L. var. italica). Horticulture, Environment, and Biotechnology 52(5):524 https://doi.org/10.1007/s13580-011-0034-7
  24. Nakata K, Tanaka M (1968) Differentiation of embryoids from developing germ cells in anther culture of tobacco. Japanese Journal of Genetics 43(1):65-70 https://doi.org/10.1266/jjg.43.65
  25. Ouyang TW, Hu H, Chuang CC, Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Scientia Sinica 16(1):79-90
  26. Park YJ, Kim KS, Jang YS, Kim CW, Bang JK (2006) Comparison of frequency embryogenesis through microspore culture of domestic cultivars in Brassica napus L. Korean Journal of Crop Science 51(1):237-241
  27. Przybylski R, Gruczynska E, Aladedunye F (2013) Performance of regular and modified canola and soybean oils in rotational frying. Journal of the American Oil Chemists' Society 90(9):1271-1280 https://doi.org/10.1007/s11746-013-2278-0
  28. Scheffler J, Sharpe A, Schmidt H, Sperling P, Parkin I, Luhs W, Lydiate D, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theoretical and Applied Genetics 94(5):583-591 https://doi.org/10.1007/s001220050454
  29. Seo MS, Sohn SH, Park BS, Ko HC, Jin M (2014) Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions. Journal of Plant Biotechnology 41(3):116-122 https://doi.org/10.5010/JPB.2014.41.3.116
  30. Shumilina D, Kornyukhin D, Domblides E, Soldatenko A, Artemyeva A (2020) Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica Rapa ssp. Rapa L. Plants 9(2):278 https://doi.org/10.3390/plants9020278
  31. Siebel J, Pauls K (1989) A comparison of anther and microspore culture as a breeding tool in Brassica napus. Theoretical and Applied Genetics 78(4):473-479 https://doi.org/10.1007/bf00290830
  32. Tatum T, Nunez L, Kushad M, Rayburn A (2006) Genome size variation in pumpkin (Cucurbita sp.). Annals of applied biology 149(2):145-151 https://doi.org/10.1111/j.1744-7348.2006.00079.x
  33. Thomas E, Wenzel G (1975) Embryogenesis from microspores of Brassica napus. Z Pflanzenzuchtg 74:77-81
  34. Thomson JA, Alonso-Amelot ME (2002) Clarification of the taxonomic status and relationships of Pteridium caudatum (Dennstaedtiaceae) in Central and South America. Botanical Journal of the Linnean Society 140(3):237-248 https://doi.org/10.1046/j.1095-8339.2002.00089.x
  35. Weber S, unker F, Friedt W (2005) Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breeding 124(5):511-513 https://doi.org/10.1111/j.1439-0523.2005.01114.x
  36. WHO (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 916(i-viii):1-149
  37. Yan XY, Li JN, Wang R, Jin MY, Chen L, Qian W, Wang XN, Liu LZ (2011) Mapping of QTLs controlling content of fatty acid composition in rapeseed (Brassica napus). Genes & Genomics 33(4):365-371 https://doi.org/10.1007/s13258-010-0149-8
  38. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics 125(4):715-729 https://doi.org/10.1007/s00122-012-1863-1