• Title/Summary/Keyword: Natural inhibitor

Search Result 778, Processing Time 0.023 seconds

Protease Inhibitor Production using Streptomyces sp. SMF13

  • Kim, In-Seop;Kim, Hyoung-Tae;Lee, Hyun-Sook;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.288-292
    • /
    • 1991
  • The aim of the current study is to evaluate the effects of medium compositions on the production of protease inhibitor in Streptomyces sp. SMF13. The production of protease inhibitor was counter-currently linked to extra-cellular protease, which were regulated by the culture conditions. Nitrogen source was the most critical ingredient affecting the production of protease inhibitor and protease. Carbon source was an important factor to determine the culture pH which affected very clearly the formation of protease and protease inhibitor. Inorganic phosphate inhibited the protease inhibitor production which was linked to the cell growth rate, although the optimal conditions for the production of protease inhibitor were not favouring to the cell growth.

  • PDF

Purification and Characterization of Proteinaceous ${\beta}-Lactamase$ Inhibitor from the Culture Broth of Streptomyces sp. SMF-19

  • Kim, Myung-Kuk;Kang, Hee-Il;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.85-89
    • /
    • 1991
  • The aim of this study is to elucidate characteristics of ${\beta}-lactamase$ inhibitor produced by Streptomyces sp. SMF-19 isolated from soil was found to produce proteinaceous extracellular ${\beta}-lactamase$ inhibitor. The ${\beta}-lactamase$ inhibitor was purified through ammonium sulfate fractionation, gel filtration, anion exchange chromatography and fast performace liquid chromatography. The molecular weight of the ${\beta}-lactamase$ inhibitor was estimated to be about 48,000 by SDS-PAGE. The mode of inhibition against penicillin G as a substrate was uncompetitive. The ${\beta}-lactamase$ inhibitor was stable in wide pH range but unstable at high temperature above $50^{\circ}C$.

  • PDF

DNA Toposiomerase I Inhibitor by Streptomyces sp. 7489 (방선균주 7489가 생산하는 DNA Topoisomerase I 저해제에 관한 연구)

  • Lee, Dong-Sun;Ha, Sang-Chul;Lee, Sang-Yong;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • During the screening of inhibitor of DNA topoisomerase I from microbial secondary metabolites, Streptomyces melanosporofaciens 7489 which was capable of producing high level of inhibitor was selected from soil. The active compound (7489-1) was purified from the culture broth by solvent extraction, silica gel column chromatography and HPLC. The inhibitor was identified as dibutyl phthalate by spectroscopic methods of UV, $^{1}H$-NMR, $^{13}C$-NMR, DEPT and EI-MS. 7489-1 showed a strong inhibitory activity against topoisomerase I with 10 ${\mu}$M of $IC_{50}$ value.

  • PDF

Optimal Conditions for the Production of Sphimin, a Sphingomyelinase Inhibitor from Steptomyces sp. F50970

  • Sipkyu Lim;Park, Wan
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.5-8
    • /
    • 1999
  • We isolated a sphingonyelinase (SMase) inhibitor, which would be a potential reagent to regulate cell proliferation, oncogenesis, and inflammation, from a strain of Streptomyces sp.. In this paper, we report the optimal conditions for the production of SMase inhibitor, designed as sphinin, from Streptomyces sp. F50970. The optimal carbon and nitrogen source were 1% soluble starch and 0.05%-0.15% trypton. Most of monosaccharides and high concentration of soluble starch above 1.0% caused falling of pH and sphinin production. Zn2+, Cu2+, Fe2+, Mn2+, and Co2+inhibited cell growth and the production of sphinin. Inorganic phosphate promoted the sphinin production. Optimal initial pH for the production of sphinin was 7.5-8.0. Addition of CaCO3 to the medium resulted in an increase of inhibitor production. Based on these results, we designed a fermentation medium for the production of a SMase inhibitor, sphinin, from Streptomyces sp. F50970.

Synthesis of Multisubstrate analog Inhibitor of Thymidylate synthase (Thymidylate Synthesis의 Multisubstrate analog Inhibitor의 합성)

  • Kwak, In-Young;Ryu, Eung-K
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.23-28
    • /
    • 1991
  • The pyrimidy1 derivative of 2'-deoxythmidine 5'-monophosphate, 3 has been synthesized for the development of anticanncer agents. The compound 3 derived from prototype inhibitor 2 by modifying the p-aminobenzoy1 glutamic acid portion has been designed to facilitate the membrane penetration. Variable temperature $^1H$ NMR spectrum for the protected nucleotide has indicated the existence of two conformers which are stable on the NMR time scale at ambient temperature.

  • PDF

Selection and Identification of a Strain KT-10 Producing the Cathepsin B Inhibitor

  • Han, Kil-Hwan;Do, Jae-Ho;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.333-340
    • /
    • 1997
  • An actinomycetes, KT-10 isolated from ginseng field in Kyongpook, Korea was selected based on its ability to produce a lysosomal cathepsin B inhibitor. The inhibitor purified from the culture supernatant of the isolate KT-10 showed strong inhibitory effects against cathepsin B as well as against papain when the activities were measured using synthetic substrate, ${\alpha}$-N-benzyloxycarbonyl-L-Iysine p-nitrophenyl ester (CLN) or ${\alpha}$-N-benzoyl-D,L-arginine 2-naphthylamide (BANA). The isolate KT-10 was identified as a species of Streptomyces based on its morphological characteristics and chemotaxonomic data. The TAXON program of Ward was used to identify Streptomyces sp. KT-10 as a strain of Streptomyces luteogriseus belong to cluster 18 of the genus Streptomyces with a Willcox probability 0.999388. The cathepsin B inhibitor was presumed to a novel material composed of a polyhydroxylamine.

  • PDF

Cyclooxygenase-2 Inhibitor from Evodia rutaecarpa

  • Kang, Sam-Sik;Kim, Ju-Sun;Son, Kun-Ho;Kim, Hyun-Pyo;Chang, Hyeun-Wook
    • Natural Product Sciences
    • /
    • v.5 no.2
    • /
    • pp.65-69
    • /
    • 1999
  • By bioassay guided fractionation followed by chromatographic separation of the MeOH extract from the fruit of Evodia rutaecarpa (Juss.) Benth. (Rutaceae), a new cyclooxygenase-2 inhibitor was isolated and identified as an alkaloid, rutaecarpine. Other alkaloids such as evodiamine and dehydroevodiamine together with limonoids were also isolated and characterized.

  • PDF