• Title/Summary/Keyword: Natural hazard

Search Result 393, Processing Time 0.033 seconds

Homogeneous Regions Classification and Regional Differentiation of Snowfall (적설의 동질지역 구분과 지역 차등화)

  • KIM, Hyun-Uk;SHIM, Jae-Kwan;CHO, Byung-Choel
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.42-51
    • /
    • 2017
  • Snowfall is an important natural hazard in Korea. In recent years, the socioeconomic importance of impact-based forecasts of meteorological phenomena have been highlighted. To further develop forecasts, we first need to analyze the climatic characteristics of each region. In this study, homogeneous regions for snowfall analysis were classified using a self-organizing map for impact-based forecast and warning services. Homogeneous regions of snowfall were analyzed into seven clusters and the characteristics of each group were investigated using snowfall, observation days, and maximum snowfall. Daegwallyeong, Gangneung-si, and Jeongeup-si were classified as areas with high snowfall and Gyeongsangdo was classified as an area with low snowfall. Comparison with previous studies showed that representative areas were well distinguished, but snowfall characteristics were found to be different. The results of this study are of relevance to future policy decisions that use impact-based forecasting in each region.

Feasibility of New Pesticide Development in Korea (우리나라에서의 신농약 개발전망)

  • Park Young-Sun
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.84-97
    • /
    • 1983
  • Under the limited arable land, the enhancement of agricultural productivity is indispensable to provide the food demand which is concomitant with the rapid increase in population. From this viewpoint, the upbringing and dissemination of high-yielding varieties has been promoted continuously and several modifications in cultural practices, including heavy fertilization, dense planting, and early transplanting, also have been gradually developed. However these changes in cultivation have led to the increased outbreak of insect pests and diseases. And this unexpected results have accelerated the number and complexity of pesticides employed as well as their consumption. Even though pesticides are essential materials contributing to the steady production of agricultural crops, large scale consumption of them has given rise to several adverse impacts, such as mammalian hazard and/or environmental contamination. In this respect, recent development of new pesticides has been concentrated on 'safe pesticide', as it were, that has the highly selective properties without unfavorable side influences on other ecosystem. According to literature cited up to now, feasibilities of safe pesticide development would be summarized as two categories. One of them is the development of chemical pesticides, which include the molecular structure modification of established pesticides for increased safety and synthesis of new safe chemicals which can attack the vulnerable point of physio-ecological characteristics in insect pests and diseases. The other is the biological pesticides which comprise natural enemies and microorganisms to act selectively on confined insect pests and diseases, In addition, improvement of physico-chemical properties of available pesticide formulations would be one of the desirable means for safe pesticide development in view of efficacy enhancement and minimization of hazardous properties or safe pesticide development, various approaches are feasible and needed to study, however, long period and much financial outlay are necessary to develop a new item. And under the present situation in Korea, there are many difficulties for performing research on all the possible routes. Therefore, combined pesticides by the reasonable combination of already registered resticides evaluated as the fairly safe pesticides and safe formulation based on their physico-chemical properties would be developed primarily. And many efforts would be given gradually for the development of new chemical and biological pesticides.

  • PDF

Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG (FLNG개념설계 단계에서 SMR 및 DMR 액화공정의 잠재적 폭발위험도 비교)

  • You, Wonwo;Chae, Minho;Park, Jaeuk;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2018
  • An FLNG (floating liquefied natural gas) or LNG FPSO (floating production, storage and offloading) unit is a notable offshore unit with the increasing demand for LNG. The liquefaction process on an FLNG unit is the most important process because it determines the economic feasibility, but would be a hazard source because of the large quantity of hydrocarbons. While a high efficiency process such as C3MR has been preferred for onshore liquefaction processes, a relatively simple process such as the SMR (single mixed refrigerant) or DMR (dual mixed refrigerant) liquefaction process has been selected for offshore units because they require a more compact size, lighter weight, and higher safety due to their space limitation for facilities and long distance from shore. It is known that an SMR has the advantages of a simple configuration, small footprint, and lower risk. However, with an increased production rate, the inherent safety of SMR needs to be evaluated because of its small train capacity. In this study, the potential explosion risks of the SMR and DMR liquefaction processes were evaluated at the conceptual design stage. The results showed that an SMR has a lower overpressure than a DMR at the same frequency, only with a small production capacity of 0.9 MTPA. With increased capacity, the overpressure of the SMR was higher than that of the DMR. The increased number of trains increased the frequency in spite of the small amount of equipment per train. This showed that the inherent risk of an SMR is not always lower than that of a DMR, and an additional risk management strategy is recommended when an SMR is selected as the concept for an FLNG liquefaction process compared to the DMR liquefaction process.

An Analysis on Spatio-Temporal Changes of Land Cover focusing on NDVI Using GIS and RS in Pyeongbuk Province, Northwest Korea (GIS와 RS를 이용한 토지피복 및 식생 분포의 시ㆍ공간적 변화 - 평안북도 서부 지역을 중심으로 -)

  • 이민부;김남신;최한성;신근하
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.835-848
    • /
    • 2003
  • This study deals with the spatio-temporal change of land cover and vegetation distribution between 1988 and 2001 using remote sensing images and CIS techniques in west area of Pyeongbuk Province, northwest Korea. Landsat TM and ETM images are geometrically and radiometrically corrected for the analysis of land cover and NDVI. Forested areas are decreased during 13 year from 1988 to 2001 in study area including Sakju, Daegwan, Guseong and Euiju of Pyeongbuk Province, because wasteland are increased by human impact and denuded land by landslide and flooding. DEM analysis presents that settlement and cropland are developed toward higher and steeper mountain slope, together with decrease NDIV values. these changes have resulted from unplanned increase of cropland without consideration of geomorphic condition. Therefore, more researches and reasonable policies are required to protect forest and cropland and stable food supply against natural hazard like landslide.

Numerical Model of Heat Diffusion and Evaporation by LNG Leakage at Membrane Insulation (LNG 화물창 방열재 균열에 따른 액화천연가스의 확산 및 온도 예측을 위한 수치 모델)

  • Lee, Jang Hyun;Kim, YoonJo;Hwang, Se Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • The leakage of cryogenic LNG through cracks in the insulation membrane of an LNG carrier causes the hull structure to experience a cold spot as a result of the heat transfer from the LNG. The hull structure will become brittle at this cold spot and the evaporated natural gas may potentially lead to a hazard because of its flammability. This paper presents a computational model for the LNG flow and heat diffusion in an LNG insulation panel subject to leakage. The temperature distribution in the insulation panel and the speed of gas diffusion through it are simulated to assess the safety level of an LNG carrier subject that experiences a leak. The behavior of the leaked LNG is modeled using a multiphase flow that considers the mixture of liquid and gas. The simulation model considers the phase change of the LNG, gas-liquid multiphase interactions in the porous media, and accompanying rates of heat transfer. It is assumed that the NO96-GW membrane storage is composed of glass wool and plywood for the numerical simulation. In the numerical simulation, the seepage, heat diffusion, and evaporation of the LNG are investigated. It is found that the diffusion speed of the leakage is very high to accelerate the evaporation of the LNG.

A Development of Enhanced Automatic Lineament Extraction Algorithm and its Application (자동 선구조 추출 알고리즘의 개발과 적용사례)

  • Choi Eun-Young;Choi Dong-Seok;Choi Hyoun-Seok;Lim Tae-Geun;Jung Lae-Chul;Yoon Wang-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • The lineament extraction from satellite images is important in the geologic studies including groundwater and mineral exploration, groundwater survey, natural hazard analysis, and many others. The lineaments in remote sensing images are identified by the difference of pixel values or brightness. Since the visual interpretation is apt to be influenced by the knowledges and experiences, many of the automatic lineament detection algorithms are developed to ensure the objectives and efficient outputs. DSTA (dynamic segment tracing algorithm) is one of such algorithms, which can be applied to not only mountainous area but also alluvial area. However, when the alluvial area is wider than mountain region, somewhat severe noises are generated. To reduce such noises, AERA (alluvial effect reducing algorithm) is proposed and tested for the image which contains mountains, cultivated land and urban area. Upon the application of AERA, alluvial effects in lineament extraction from satellite image are substantially reduced.

Growth Retardation and Death of Rice Plants Irradiated with Carbon Ion Beams Is Preceded by Very Early Dose- and Time-dependent Gene Expression Changes

  • Rakwal, Randeep;Kimura, Shinzo;Shibato, Junko;Nojima, Kumie;Kim, Yeon-Ki;Nahm, Baek Hie;Jwa, Nam-Soo;Endo, Satoru;Tanaka, Kenichi;Iwahashi, Hitoshi
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.272-278
    • /
    • 2008
  • The carbon-ion beam (CIB) generated by the heavy-ion medical accelerator in Chiba (HIMAC) was targeted to 7-day-old rice. Physiological parameters such as growth, and gene expression profiles were examined immediately after CIB irradiation. Dose-dependent growth suppression was seen three days post-irradiation (PI), and all the irradiated plants died by 15 days PI. Microarray (Agilent rice 22K) analysis of the plants immediately after irradiation (iai) revealed effects on gene expression at 270 Gy; 353 genes were up-regulated and 87 down-regulated. Exactly the same set of genes was affected at 90 Gy. Among the highly induced genes were genes involved in information storage and processing, cellular processes and signaling, and metabolism. RT-PCR analysis confirmed the microarray data.

A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure (개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구)

  • Park, Chan-Kuk;Chu, Byeong-Gil;Kim, Cheol
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

One Dimensional Seismic Response Analysis on Sub-ground of Architectural Heritage in Seoul, Korea (서울지역 주요 문화재 하부 지반에 대한 일차원 지진응답해석)

  • Jeon, Seongkon;Kim, Dukmoon;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.29-36
    • /
    • 2014
  • Under the situation that the seismic vulnerability are a worsening problem in many world's megacities, the disaster preparedness including earthquake hazards is a matter of primary concern in the capital city of Korea, Seoul. Especially, because it is hard to move or dismantle the architectural heritages, the mitigation of earthquake damages is potentially more difficult than other structures. Moreover, in order to decide the proper preparedness plan against future earthquakes, it is very important to understand how soils pass the seismic waves to architectural heritages. In this paper, therefore, the ground condition and depth of bedrock was investigated by the MASW-method at heritages located in Seoul. Then one-dimensional seismic response analysis was conducted based on the distribution of shear wave velocity. As the major result of analyses, peak acceleration, site amplification factor and natural period are proposed in each site for recurrence period.

Ground-Motion Prediction Equations based on refined data for dynamic time-history analysis

  • Moghaddam, Salar Arian;Ghafory-Ashtiany, Mohsen;Soghrat, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.779-807
    • /
    • 2016
  • Ground Motion Prediction Equations (GMPEs) are essential tools in seismic hazard analysis. With the introduction of probabilistic approaches for the estimation of seismic response of structures, also known as, performance based earthquake engineering framework; new tasks are defined for response spectrum such as the reference criterion for effective structure-specific selection of ground motions for nonlinear time history analysis. One of the recent efforts to introduce a high quality databank of ground motions besides the corresponding selection scheme based on the broadband spectral consistency is the development of SIMBAD (Selected Input Motions for displacement-Based Assessment and Design), which is designed to improve the reliability of spectral values at all natural periods by removing noise with modern proposed approaches. In this paper, a new global GMPE is proposed by using selected ground motions from SIMBAD to improve the reliability of computed spectral shape indicators. To determine regression coefficients, 204 pairs of horizontal components from 35 earthquakes with magnitude ranging from Mw 5 to Mw 7.1 and epicentral distances lower than 40 km selected from SIMBAD are used. The proposed equation is compared with similar models both qualitatively and quantitatively. After the verification of model by several goodness-of-fit measures, the epsilon values as the spectral shape indicator are computed and the validity of available prediction equations for correlation of the pairs of epsilon values is examined. General consistency between predictions by new model and others, especially, in short periods is confirmed, while, at longer periods, there are meaningful differences between normalized residuals and correlation coefficients between pairs of them estimated by new model and those are computed by other empirical equations. A simple collapse assessment example indicate possible improvement in the correlation between collapse capacity and spectral shape indicators (${\varepsilon}$) up to 20% by selection of a more applicable GMPE for calculation of ${\varepsilon}$.