• Title/Summary/Keyword: Natural food additive

Search Result 102, Processing Time 0.031 seconds

Effect of Marination with Black Currant Juice on the Formation of Biogenic Amines in Pork Belly during Refrigerated Storage

  • Cho, Jinwoo;Kim, Hye-Jin;Kwon, Ji-Seon;Kim, Hee-Jin;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.763-778
    • /
    • 2021
  • The effect of marination with black currant juice (BCJ) was investigated for their effects on meat quality and content of biogenic amines (BAs) [putrescine (PUT), cadaverine (CAD), histamine (HIM), tyramine (TYM), and spermidine (SPD)] in pork belly during storage at 9℃. BCJ was shown to have antibacterial activities against Escherichia coli and Pseudomonas aeruginosa. Additionally, the pH of pork belly marinated with BCJ (PBB) was significantly lower than that of raw pork belly (RPB) during storage. No significant difference in microorganisms between RPB and PBB was observed at day 0 of storage. However, at days 5 and 10 of storage, volatile basic nitrogen (VBN) was significantly decreased in PBB compared to RPB, and PBB also demonstrated significantly lower numbers of bacteria associated with spoilage (Enterobacteriaceae and Pseudomonas spp.) at these time-points. PBB was also associated with significantly reduced formation of BAs (PUT, CAD, TYM, and total BAs) compared to RPB at days 5 and 10 of storage. These results indicated that BCJ can be regarded as a natural additive for improving meat quality by preventing increased pH, VBN, bacterial spoilage, and inhibiting BAs formation during refrigerated storage.

Association Analysis between SNP Marker in Neuopeptide Y (NPY) Gene and Carcass and Meat Quality Traits in Korean Cattle

  • Chung, Eui-Ryong;Shin, Sung-Chul;Heo, Jae-Pil
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.537-542
    • /
    • 2011
  • Biological or physiological genes that regulate metabolism and energy partitioning have the potential to influence economically important traits such as carcass and meat quality traits in beef cattle. The neuropeptide Y (NPY) functions as a central appetite stimulator and plays a major role in feed intake and energy-balance control. Therefore, the NPY gene is an excellent biological and physiological candidate gene for body weight, feeding, fatness or growth related traits in beef cattle. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the NPY gene and to evaluate the association of NPY SNP markers with carcass and meat quality traits in Korean cattle. The genomic region (711 bp) including intron 2 of NPY gene was amplified and sequenced, and five SNPs, g.4389 Del(C), g.4371Del(C), g.4271T>C, g.1899A>G and g.1517A>C, were identified. The PCR-RFLP method was then developed to genotype the individuals examined. The g.4271T>C SNP was significantly associated with M. Longissimus dori area (LDA) value (p<0.027). Animals with the TT ($78.144{\pm}0.950\;cm^2$) genotype had higher LDA than those with the CC ($72.266{\pm}2.039\;cm^2$), and animals with TC genotype showed intermediate value. This SNP genotype also showed a highly significant additive genetic effect for the LDA (p<0.01). No significant associations, however, was detected between any of the SNP genotype and other carcass traits measured in this study. In conclusion, SNP genotype of the NPY gene may be used as DNA markers to select animals that have a higher meat yield.

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.

Antibacterial Effects of Extracts of Thuja Orientalis cv Aurea Nana Cones against Food-spoilage and Food-borne Pathogens

  • Yang, Xiao Nan;Hwang, Cher-Won;Kwon, Gi-Seok;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.459-465
    • /
    • 2011
  • BACKGROUND: Nowadays, Chemical antiseptics have become great problems for health and environmental, so that developing of new substitutes for chemical antiseptics is more and more important. Natural product is a kind of environment-friendly additive that could be used as antiseptic in food industry. Thuja orientalis cv Aurea Nana is a gymnospermous plant of the family Cupressaceae, native to northwestern China and widely naturalised elsewhere in Korea and Japan. This study was aimed to investigate the antibacterial potential of various organic extracts from T. orientalis cones against some food-borne and food-spoilage bacteria. METHODS AND RESULTS: Hexane extract (HE), chloroform extract (CE), ethyl acetate extract (EAE) and methanol extract (ME) were obtained from female cones of T. orientalis. The antibacterial activities of various extracts were tested by standard agar diffusion and minimum inhibitory concentrations (MICs) against five gram-positive and six gram-negative bacteria. Cell viability and morphology change of L. monocytogenes ATCC 10943 treated with hexane extract were also observed. The various extracts displayed remarkable antibacterial effects against all the gram-positive bacteria but did not show any effect against the gram-negative bacteria. Hexane extract has the highest inhibitory effect on cell viability of L. monocytogenes ATCC 10943. SEM observation also demonstrated the damaging effect of the hexane extract on the morphology of L. monocytogenes ATCC 10943 at the minimum inhibitory concentration. CONCLUSION(s): The tested gram-positive bacteria were significantly inhibited by organic extracts of T. orientalis cone. Hexane extract was the most potent against Listeria monocytogenes ATCC 10943, as evidenced by the lowest MIC level and the complete inhibition of cell viability within shortest exposure time, along with SEM observation.

Study on Instant Fish Cake Noodle Manufacturing Techniques Using Ultra-fine Powdered Kelp (초미세 다시마 분말을 활용한 즉석 어묵 면 제조기술연구)

  • Park, Yoo-Jin;Kim, Se-Jong;Han, Myung-Ryun;Chang, Moon-Jeong;Kim, Myung-Hwan
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to investigate the effect of ultra-fine powder kelp powder as a natural food additive for fast rehydration on the quality of freeze-dried fish cake noodle with soft and elastic texture properties during or after cooking. The average moisture content and water activity ranges of freeze-dried fish cake noodle were 3.71±0.12% (dry basis) and 0.185-0.332, respectively. The water activity of freeze-dried fish cake noodle decreased upon increasing the kelp powder content at the same moisture content. The rehydration ratios of fish cake noodle with 1, 3, and 5% (w/w) of kelp powder were 1.39, 1.49, and 1.77 g water/g solid, respectively. The hardness of the 5% (w/w) kelp powder-enhanced fish cake noodle after rehydration had the lowest value among the three samples upon using a texture profile analysis test (TPA). In the sensory hedonic test results, 5% (w/w) kelp powder added to fish cake noodle after rehydration produced the highest values in texture, flavor, and overall quality.

Flavonoid Fraction Purified from Rhus verniciflua Stokes Actively Inhibits Cell Growth Via Induction of Apoptosis in Mouse Tumorigenic Hepatocytes

  • Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2004
  • Dietary flavonoids are currently receiving considerable attention in developing novel cancer-preventive approaches because of their potential capacities to actively induce apoptosis of cancer cells. In our previous report, a flavonoid fraction, which consisted mainly of protocatechuic acid, fustin, fisetin, sulfuretin, and butein and named RCMF (RVS chloroform-methanol fraction), was prepared from a crude acetone extract of Rhus verniciflua Stokes (RVS) that is traditionally used as food additive and herbal medicine. In this study, we evaluated the effects of the RCMF on cell proliferation and apoptosis using SV40-transformed tumorigenic hepatocytes, BNL SV A.8. Tritium uptake assay showing the proliferative capacity of the cells was strongly suppressed in the presence of RCMF. This anti-proliferative effect was further confirmed through trypan blue exclusion. RCMF-mediated suppression of cell growth was verified to be apoptotic, based on the increase in DNA fragmentation, low fluorescence intensity in nuclei after propidium iodide staining, and the appearance of DNA laddering. Collectively, this study demonstrated that RCMF can be approached as a potential agent that is capable of significantly inhibiting cell growth of hepatic cancer cells.

Synergistic Effect of Tocopherol, Citric Acid and Sodium Polyphosphate on the Oxidative Stability of Heated Frying Oil (가열유지(加熱油脂)의 산화안정성(酸化安定性)에 대(對)한 Tocopheol, 구연산 및 인산염(燐酸鹽)의 상승효과(相乘效果))

  • Chang, Hyun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.15-19
    • /
    • 1989
  • The oxidative stability of palm oil with moisture addition during heationg was investigated and the antioxidant effects of tocopherol, citric acid and sodium polyphosphate were evaluated. The addition of natural tocopherol up to 200 ppm level did not improve the oxidative stability of palm oil with moisture (1m1 $H_2O$ additive to 200g of oil at $180^{\circ}C$). The maximum antioxidant effect was observed at the Concentration of 400 ppm. Addition of citirc acid did not influence the effective concentration of tocopherol. Whereas addition of sodium polyphosphate and citric acid increased the antioxidant effect of tocopherol. The maximum synergistice effect was observed at the concentrations of 50 ppm citric acid and 50 ppm of sodium polyphosphate. Addition of 50 ppm citric acid and 50 ppm sodium polyphosphate to 100 ppm of tocopherol exceeded the antioxidant effect of 400 ppm tocopherol alone.

A Study on the Inhibition of Propylene Chlorohydrins in HPMC Manufacturing Process ( I ) (HPMC 제조공정의 PCH 발생 억제에 관한 연구 ( I ))

  • Jang, Hyun-Duk;Yoo, Jae-Seong;Kim, Bong-Sun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.315-324
    • /
    • 2011
  • The purpose of this study is to improve for the inhibition of the generating the PCH(Propylene Chlorohydrins) in HPMC(Hydroxypropylmethyl Cellulose) manufacturing process. HPMC is made of cellulose which is natural high polymer. And HPMC is applicable to several industrial areas. Especially it can be used in food industrial as an effective additive. PCH is the by-product which is generated in chemical reaction in HPMC manufacturing process. So it is essential to eliminate PCH for the improvement of product quality. Therefore we have studied to minimize the amount of PCH. It is expected that the application of HPMC could be enlarged as the result of this study.

  • PDF

A Study on the Inhibition of Propylene Chlorohydrins in HPMC Manufacturing Process(I) (HPMC 제조공정의 PCH 발생 억제에 관한 연구(I))

  • Jang, Hyun-Duk;You, Jae-Seong;Kim, Bong-Sun
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.247-252
    • /
    • 2011
  • The purpose of this study is to minimize the PCH(Propylene CHlorohydrins) as a by-product in HPMC(HydroxyPropyl MethylCellulose) manufacturing process. HPMC is made of cellulose which is natural high polymer. And HPMC is applicable to several industrial areas. Especially it can be used in food industry as an effective additive. PCH is the by-product which is generated in chemical reaction in HPMC manufacturing process. So it is essential to eliminate PCH for the improvement of product quality. Therefore we have studied to minimize the amount of PCH. It is expected that the application of HPMC could be enlarged as the result of this study.

Antibacterial and Antioxidant Activities of the Essential Oil from the Roots of Anthriscus sylvestris (전호(Anthriscus sylvestris) 뿌리 정유의 항균 및 항산화 작용)

  • Lim, Hyerim;Shin, Seungwon
    • YAKHAK HOEJI
    • /
    • v.56 no.5
    • /
    • pp.320-325
    • /
    • 2012
  • To develop a new effective and safe natural antibiotics and antioxidant the essential oil was extracted from the roots of Anthriscus sylvestris by steam distillation. Its composition was analyzed by GC-MS. The activities of the essential oil fraction and its main components were evaluated against antibiotic-susceptible and -resistant strains of some food-born bacteria. In addition the synergism was examined with this oil combined with antibiotic by checkerboard titer test. The antioxidant activities were determined by in 1,1-diphenyl-2-picryl-hydrazil (DPPH) free radical scavenging activity test and reducing power assay. The essential oil fraction of A. sylvestris revealed significant inhibiting activities against antibiotic-susceptible and -resistant species of Vibrio and Shigella with MICs ranged from 1.00~4.00 mg/ml. It showed synergistic or additive effects when it was combined with amphicillin or trimethoprim/sulfamethoxazole (1 : 9). Additionally, the essential oil fraction of A. sylvestris exhibited significant DPPH free radical scavenging activity and the reducing power.