• Title/Summary/Keyword: Natural flow

Search Result 2,452, Processing Time 0.026 seconds

Free Convective Transition of Intermediate Prandtl-Number Fluids in a Wide-Gap Horizontal Annulus (넓은 수평 환형 공간에서의 중간 Prandtl수 유체의 자연 대류의 천이)

  • Yoo, Joo-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.169-176
    • /
    • 2000
  • Natural convection in a wide-gap horizontal annulus is considered, and the transition of flows and the bifurcation phenomenon are investigated for the fluids with Pr=0.2 and 0.3. At Pr=0.2, a bicellular flow pattern is observed at high Rayleigh number, and the solution is unique. At Pr=0.3, both the steady unicellular and bicellular flows exist above a certain critical Rayleigh number. For the fluids of Pr=0.2, the bicellular flow can be obtained by the impulsive heating of the inner cylinder, but it is not obtained from the zero initial condition for Pr=0.3. Hysteresis phenomena have not been observed. A transition from a bicellular flow to a unicellular flow occurs for Pr=0.3.

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

Dynamic Modeling of PIG Flow in Natural Gas Pipelines (천연가스배관내 피그흐름의 동적모델링)

  • Kim, Sang-Bong;Nguyen, Tan Tien;Yoo, Hui-Ryong;Rho, Yong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.241-246
    • /
    • 2001
  • This paper introduces modeling and solution for the dynamics of pipeline inspection gauge (PIG) flow in natural gas pipeline. Without of bypass flow, the dynamic behavior of the PIG depends on the different pressure between the rear and nose parts, which is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. With bypass flow, the PIG dynamics also depends on the amount of bypass flow across its body. The mathematical model are derived for unsteady compressible flow of the PIG driving and expelled gas, and for dynamics of the PIG. The bypass flow is assumed to be incompressible with the condition of its Mach number smaller than 0.45. The method of characteristic (MOC) and the Runge-Kutta method are used to solve the system governing equations. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show that the derived mathematical model and the proposed solution are effective for estimation the dynamics of the PIG with and without bypass flow under given operational condition.

  • PDF

Characteristic Analysis of Hot Spot Temperature according to Cooling Performance Variation of Natural Ester Transformer (식물성 절연유 변압기의 냉각특성 변화에 따른 최고점온도 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • Natural ester has a higher biodegradability, flash and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester also has a higher pour point, viscosity, and water content. These characteristics hamper circulation and the electrical properties of oil-filled transformer. Thus, this paper applied electromagnetic-thermal-flow coupled analysis method to predict temperature distribution inside 154kV single phase power transformer using natural ester. It modeled in the actual appearance for the tank and winding of the power transformer to improve the accuracy of analysis and applied heat flow analysis that considered hydromechanics and heat transfer at the same time. It calculated the power loss, the main cause of temperature rise, from winding and core with electromagnetic analysis then used for the heat source for the heat flow analysis. It then compared the reasonability of result of measurement analysis based on the result acquired from temperature rise test using FBG sensor on the power transformer.

A study of natural convection in non-Newtonian fluids induced by a vertical wavy surface (기복을 이루는 수직벽에서 비뉴턴유체의 자연대류에 관한 연구)

  • Kim, Eun-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3686-3694
    • /
    • 1996
  • A numerical investigation of natural convection flow along irregular vertical surfaces is reported. A transformation method is applied to the problem of natural convection under the assumption of a large Grashof number. A vertical wavy surface is used as an example to demonstrate the advantages of the transformation method, and to show the heat transfer mechanism near such surfaces. Surface non-uniformities on the boundary layer flow induced by a constant was temperature, semi-infinite surface are investigated. Also the effects of Prandtl number, flow index, and surface amplitude in Non-Newtonian fluids are discussed. When possible, the comparison of the numerical results shows a good agreement. The amplitude is proportional to the amplitude of a wavy surface. The results demonstrate that the local heat flux along a wavy surface is smaller than that of a flat surface. The frequency of the wavy surface is half that of the local heat transfer rate. The amplitude of the local Nusselt number gradually decreases downstream where the natural convection boundary layer grows thick.

Development of a Debris Flow Sensing Device and Real Time Warning System (토석류 감지장치 개발과 실시간 경보체계 구축 사례)

  • Kim, Kyung-Suk;Jang, Hyun-Ick;Chung, Sung-Yun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.273-280
    • /
    • 2008
  • Debris flow has been considered as one of the major natural hazards and possesses tens to hundreds times higher destructive potential than that of slope failure. In the past 5 years, its occurrence frequency was and is likely to increasing due to the global warming. Although various methods such as basin vegetation or structural dams can be implemented to counter measure the debris flow, these methods are not always the right answer to the problem when magnitude of debris flow is far bigger than could be defended. Land use regulations to avoid the hazard or early debris flow warning system to evacuate the expected inundated area can be more economical and practical actions for those cases. In this study, an early debris flow warning system composed of rainfall measuring device, debris flow sensing device and video camera is introduced. The system is designed to issue the warning when rainfall threshold is exceeded or debris flow is sensed by sensing device. Developed monitoring system can be used to cope promptly with the debris flow risk.

  • PDF

Lock-on states of a circular cylinder in the oscillatory flow (진동 유동장에서 원형 실린더의 lock-on 해석)

  • Kim Wontae;Sung Jaeyong;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.245-248
    • /
    • 2002
  • Vortex lock-on or resonance in the flow behind a circular cylinder is visualized by a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K{\'{a}}rm{\'{a}}n$ vortices in the wake-transition regime at the Reynolds number 360. Basically, natural shedding state is observed to compare with lock-on state. Wake motion by the change of the shedding frequency of lock-on state is investigated. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. The physical flow phenomena of natural shedding and lock-on states are analyzed with physical parameters of recirculation and vortex formation region. Consequently, it is found that the change of wake bubble plays an important role in the flow at the lock-on state. Vortex formation region is also actively changed like recirculation region as the lock-on occurs. Therefore, it is deduced that the recirculation region is closely related with the vortex formation region.

  • PDF

Analysis of Flow Duration Based on SWAT-K Simulation for Construction of Natural Riparian (자연하안조성을 위한 SWAT-K 모의치 기반 유황 분석)

  • Kim, Nam-Won;Lee, Jeong-Woo;Chung, Il-Moon;Kim, Ji-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1457-1464
    • /
    • 2011
  • In this study, the method of estimating hydrologic information (water depth, submerged period etc.) on the proper selection of construction point and scale as well as vegetation type suggested for the design of natural riparian rehabilitation structure. Long-term comprehensive watershed model SWAT-K(Korea) was applied to this purpose. Flow duration analysis was conducted to analyze the hydrologic characteristics of Pyungchang watershed at which the 'bangtul' construction method was tested. For this purpose 20 years (1989-2008) rainfall runoff analysis was carried out. Based on the simulated daily streamflow data, flow duration curve was made to analyze the flow characteristics, and the water depth hydrograph was made to analyze the water depth distribution at the cross section. Finally, the information for the selection of proper vegetation according to the submerged period is suggested.

Flow Analysis of Facade Integrated Solar Water Heater with Natural Circulation (파사드 일체형 자연순환 태양열온수기 유동해석)

  • Baek, Nam-Choon;Lee, Wang-Je;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.167-172
    • /
    • 2016
  • Purpose: The solar water heater with natural circulation has been used for several decades in the world as it is automatically operated without a pump and controller and is easy to maintain and repair. After the subsidy was offered from 2012, the solar water heater with natural circulation is becoming increasingly popular in Korea. Recently, the development of a wall-integrated solar water heater, which improves the applicability of buildings and prevents the overheating in the summer, is being developed. On the other hand, the design and performance evaluation data of solar water heaters are very inadequate, and analysis of heat and flow is required to develop a new type of solar water heater. Method: Therefore, in this study, we proposed a new simplified system analysis model that reflects heat and pressure loss from the test results of KS B ISO 9806-1 (Solar collector test method), assuming that the collector is a simple pipe system, the validity of which was verified through experiments. Result: As a result, first, the RMSE of the system circulation flow rate and the average temperature of the inlet and outlet of the collector according to the experimental results and the simulation are 0.05563 and 0.88530, respectively, which are very consistent. Secondly, the mass flow rate is increased linearly with the increase of the solar radiation, and the mass flow rate is 0.0104 ~ 0.0180kg/s in the range of $200{\sim}380W/m^2$ of solar irradiance. Compared with the test flow rate 0.0764kg / s of the test collector, it showed a level of less than 20%.

Numerical simulation of natural convection around the dome in the passive containment air-cooling system

  • Chunhui Dong;Shikang Chen;Ronghua Chen;Wenxi Tian;Suizheng Qiu;G.H. Su
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2997-3009
    • /
    • 2023
  • The Passive containment Air-cooling System (PAS) can effectively remove the decay heat of the modular small nuclear reactor after an accident. The details of natural convection around the dome, which is a key part of PAS, were investigated numerically in the present study. The thermal dynamics around the dome were studied through the temperature, pressure and velocity contours and the streamlines. Additionally, the formation of the buoyant plume at the top of the dome was investigated. The results show that with the increase of Ra, the lift-off point moves toward the bottom of the dome, and the eddy under the buoyant plume grows larger gradually, which enhances the heat transfer. And the heat transfer along the dome surface with different truncation angles was investigated. As the angle increases, the heat transfer coefficient becomes stronger as well. Consequently, a newly developed heat transfer correlation considering the influence of truncation angle for the dome is proposed based on the simulated results. This study could provide a better understanding of natural convection around the dome of PAS and the proposed correlation could also offer more predictive value in the improvement of nuclear safety.