• 제목/요약/키워드: Natural fibers

검색결과 371건 처리시간 0.02초

Comparative investigation on fatigue and moisture absorption behavior of hemp and Jute fibre polymer composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.729-736
    • /
    • 2022
  • Earth is facing a serious problem of pollution and scarcity of energy sources. The synthetic fibers used in automobile and Aerospace manufacturing sectors are non-renewable and harmful to environment. International Agency such as FAA and SAE is forcing for green fuel, green materials and structures. Further exploration is much needed to understand its potential in structural applications. In the current study, hemp and Jute fibre based composites were developed and tested for assessing their suitability for possible applications in automobile and aerospace sectors. Composites were undergone tensile test, water absorption test, and fatigue analysis to understand its behavior under various loading conditions. The finite element analysis has been carried out to understand the fatigue behaviour of composites. The results revealed that the usage of hemp and jute fibre reinforced composites can improve mechanical properties and have shown a viable alternative to replace synthetic fibres such as glass fibres for specific applications. Hemp reinforced bio-composites have shown better performance as compared to Jute reinforced bio-composites while water resistance characteristics for hemp is poorer to jute fibres.

Dexamethasone에 의하여 유발된 근육 위축 생쥐의 비복근 근섬유에서 apoptosis와 염증 반응에 미치는 오미자 추출물의 영향 (Effects of Schisandrae Fructus Supplementation on Apoptosis and Inflammatory Response in Gastrocnemius Muscle of Dexamethasone-Induced Muscle Atrophy Mice)

  • 최영현
    • 대한한의학방제학회지
    • /
    • 제25권3호
    • /
    • pp.363-374
    • /
    • 2017
  • Dried fruits of Schizandra chinensis Baillon, Fructus Schisandrae, have been widely used for many years to prevent and treat various diseases in Asian countries including Korea and Russia. It has recently been reported that extracts of Fructus Schisandrae are effective for controlling muscle and skeletal diseases. In this study, we investigated the efficacy of ethanol extract of Fructus Schisandrae (EEFS) on apoptosis and inflammatory response in gastrocnemius muscle of dexamethasone-induced catabolic muscle atrophy mice as part of natural substance discovery and functional analysis for improving muscle function. According to the results of this study, EEFS supplementation attenuated body weight gains and suppressed calf thickness loss in dexamethasone-induced muscle atrophic mice. Gastrocnemius muscle immunohistochemistry showed that expression of caspase-3 and poly(ADP-ribose) polymerase, which are representative apoptotic markers, was markedly increased in dexamethasone control mice; however, their expression was effectively reduced in the EEFS-fed mice. EEFS supplementation also prevented dexamethasone-induced increases in immunoreactivity of muscle fibers for myostatin, an important negative regulator of skeletal muscle mass. In addition, EEFS significantly normalized the increased numbers of nitrotyrosine, 4-hydroxynonenal and inducible nitric oxide synthase-positive muscle fibers compared to that found in dexamethasone control mice. These results suggest that EEFS protects dexamethasone-induced muscular atrophy by decreasing apoptosis and inflammatory responses, and EEFS is more likely to be developed as a muscle strengthening agent.

12주 근력강화훈련 동안 표면근전도 신호의 특성 (Characteristics of Surface Electromyography During Strength Training of 12 weeks)

  • 신화경;조상현;차광석
    • 한국전문물리치료학회지
    • /
    • 제10권1호
    • /
    • pp.109-128
    • /
    • 2003
  • This study tested whether repeated measurement of median frequency (MDF)-related variables could express the muscle power changes during a 12-week DeLome strengthening program, by using consecutive overlapping FFT (Fast Fourier transformation) and integrated EMG (IEMG) from surface EMG data for isometric and isotonic exercise. To evaluate the effect of training, the following were recorded every 3 weeks for the elbow flexors and knee extensors of 5 healthy male volunteers: MVC, lRM, limb circumference, and surface EMG during isometric MVC or isotonic contraction at 10RM load. From the EMG data, IEMG and variables from a regression analysis between MDF and time were obtained. MVC, lRM, IEMG, and initial MDF increased linearly over the training period. The fatigue index and slope of the regression line increased temporarily until the 6th week and decreased thereafter. From these results, there appeared to be enhanced neural recruitment of fast twitch fibers in the first 6 weeks and continued enhancement in the recruitment and hypertrophy of fast twitch fibers, which led to increased fatigue resistance, over the last 6 weeks. Accordingly, the MDF and IEMG analysis technique could demonstrate the effect of the program detected significant changes in both isometric and isotonic contractions. EMG analysis methods can be used to estimate the electrophysiological and histological changes in skeletal muscles during a strengthening program.

  • PDF

돼지 유구낭미충증의 병리조직학적 관찰 (A histopathological study on porcine cysticercosis)

  • 신태균;김승호
    • 대한수의학회지
    • /
    • 제33권3호
    • /
    • pp.465-469
    • /
    • 1993
  • 낭미충(Cysticercus cellutosae)에 자연감염된 돼지의 각 장기를 조직학적으로 검사하였던 바 다음과 같은 결과를 얻었다. 피막을 형성하는 낭미충은 골격근, 파하직, 심장 및 뇌조직에서 관찰되었다. 조직학적 소견으로는 골격근의 근막내와 심장 심외막하에서 낭충주위는 피막의 형성과 함께 급성 염증반응이 인정되었고 부위에 따라서는 교원섬유 및 선유아세포의 증식에 의한 두터운 피막이 관찰되었고 인접한 골격근 또는 심근과 견고하게 부착된 예도 있었다. 피막주위에서는 호산구, 임파구, 대식세포의 침윤이 부위에 따라 경미하거나 또는 심한 형태로 다양하였다. 대뇌의 연막하에 형성된 피막주위에는 혈관과 결합조직의 증식이 현저하였고, 혈관주위 원형세포의 침윤과 임파결절 모양의 구조가 인정되었다. GFAP 면역반응은 혈관주위를 따라 GFAP 양성의 섬유가 잘 발달되었고 피막낭 외측을 따라 전체를 둘러싸는 경항이었다. 결론적으로 유구낭미충 감염돼지의 조직소견은 감염 장기에 따라 염증반응이 다양하고 낭충의 피막은 감염 초기에 형성된 것으로 추정되었다.

  • PDF

활성탄소섬유의 액상흡착 (Liquid Phase Adsorption of Activated Carbon Fibers)

  • 문동철;김창수;박일영;김미란;홍승수;이광호;이창기
    • 분석과학
    • /
    • 제13권5호
    • /
    • pp.573-583
    • /
    • 2000
  • 몇 가지 식물섬유, 합성섬유 및 혼합섬유를 원료로 하여 비표면적 차이가 나는 세가지 등급의 활성탄소섬유를 제조하고 입상활성탄을 대조흡착제로 하여 페놀 및 메틸렌블루의 액상흡착특성을 비교 검토하였다. 이들 흡착질 수용액의 활성탄소섬유에 대한 흡착등온선, 흡착속도 및 컬럼통액실험을 통하여 돌파점곡선을 측정하였다. 페놀 및 메틸렌블루의 흡착등온은 모두 type I을 나타내었으며 낮은 평형농도에서도 높은 흡착량을 나타내었다. 흡착질에 대한 활성탄소섬유의 흡착속도는 활성탄에 비하여 100배 이상 빠른 흡착속도를 보이며 유효확산계수도 20배 이상 높았다. 컬럼통액 실험결과 활성탄소섬유의 흡착용량은 활성탄에 비해 10배 이상으로 나타났다. 유해성 유기 오염물질 10종을 포함한 조제수를 자연여과방식으로 50 L씩 처리한 결과 2단에서 이들 유기성 오염물질을 완전히 제거하여 활성탄에 비하여 수처리 효율이 훨씬 높은 결과를 보였다.

  • PDF

멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가 (Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction)

  • 정연제;김정대;황병관;김희태;오훈규;김용태;박성보;이제명
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

대나무-면 복합직물의 양이온화에 관한 연구 (A Study of the Cationization of Bamboo-cotton Blended Fabric)

  • 노영주;이신희
    • 한국의류산업학회지
    • /
    • 제24권2호
    • /
    • pp.260-266
    • /
    • 2022
  • Cellulose fiber is a material used in various fields. It is the most used type of fiber because of its excellent hygroscopicity and dyeability. Recently, as natural fiber materials have been highlighted due to the influence of eco-friendliness and well-being, bamboo fiber has become a commonly used eco-friendly fiber. Cellulose fibers are part of the -OH hydroxyl group, which means they are more chemically reactive than synthetic fibers. In this study, the cationization properties of bamboo-cotton blended fabrics cationized using CHPTAC (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) in the PDC (padding-drying-curing) method were investigated. Various characteristics according to cationization were studied through elemental analysis, FT-IR (fourier-transform infrared spectroscopy) analysis, X-ray diffraction analysis, TGA (thermogravimetric) analysis, and SEM (scanning electron microscope) analysis. The nitrogen content of the cationized bamboo-cotton blended fabric increased with an increase in the concentration of the cationizing agent CHPTAC, and it was seen to be highly bound to cellulose molecules. As a result of the FT-IR analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics were seen to be typical cellulose. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As the cationization progressed, micropores appeared on the surface of the blended fabric.

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

접착용액을 이용한 케나프섬유 처리 유·무에 따른 케나프/천연고무 복합재료의 경화특성, 경도, 인장탄성률 및 마모에 미치는 케나프섬유의 함량 및 길이의 영향 (Effect of Kenaf Fiber Content and Length on the Cure Characteristic, Hardness, Tensile Modulus, and Abrasion of Kenaf/Natural Rubber Composites in the Presence and Absence of Kenaf Fiber Treatment with Adhesive Solution)

  • 조이석;조동환
    • 접착 및 계면
    • /
    • 제19권2호
    • /
    • pp.60-67
    • /
    • 2018
  • 본 연구에서는 친환경 천연섬유인 케나프의 표면을 Chemlok 402를 함유하고 있는 접착용액으로 전처리하였을 경우, 케나프/천연고무 복합재료의 경화거동, 경도, 인장특성 그리고 마모특성에 미치는 섬유 표면처리 유 무, 섬유함량 및 섬유길이의 영향을 조사하였다. 복합재료를 구성하는 케나프섬유 함량은 평균 케나프섬유의 길이가 약 2 mm로 일정한 상태에서 각각 0, 5, 10, 15, 20 phr로 달리하였다. 또한 섬유함량이 5 phr로 고정된 상태에서 평균 섬유길이는 각각 2 mm, 35 mm, 70 mm로 달리하여 각 특성을 비교하였다. 천연고무 복합재료의 경화거동을 나타내는 Tmax 값과 tc90 값, Shore A 경도, 인장탄성률 그리고 마모저항성은 케나프섬유 함량과 길이에 크게 의존하였다. 이러한 특성들은 케나프섬유의 표면을 접착용액으로 전처리한 경우가 처리하지 않은 경우보다 더 우수한 특성을 나타냈다. 이러한 현상은 전처리된 케나프섬유와 고무매트릭스 사이의 계면접착 상태가 개선되었기 때문이다. 본 연구결과는 천연섬유강화 복합재료의 물성을 향상시키기 위해 접착용액의 적절한 사용이 가능하다는 것을 제시하여 준다.