• Title/Summary/Keyword: Natural fiber drain

Search Result 8, Processing Time 0.03 seconds

A Study of the Filter Properties of Natural Fiber Drain (천연마섬유 배수재의 필터특성에 관한 연구)

  • 이광민;장연수;김수삼;고경환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.313-319
    • /
    • 1999
  • The properties of natural fiber filter are evaluated using laboratory experiments to find out the possibility of natural fiber drain as a substitute material of plastic board drain Experiments performed for natural fiber filter are effective opening size, permeability and clogging, Three filters were used in the experiment, which are constituted with the filter of different densities encircled with wefts and warps. The results were compared with those for the filter of MD88-80.

  • PDF

Characteristics of the Natural Fiber Drain Board for Environmentally Friendly Soil Improvement Method (자연친화형 연약지반개량공법을 위한 천연섬유배수재의 특성 연구)

  • Kim, Ju Hyong;Cho, Sam-Deok;Jang, Yeon-Su;Kim, Soo Sam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • The recent environmental protection issue has diminished the supply of sand for soft ground improvements so much that the prices of sand have shown a sudden rise. Plastic material is one of substitutes for sand material, but plastic is nonperishable and doubtable if it has potential environmental hormone disrupting substances. Moderate-priced natural fiber drain board made with coconut coir and jute filter are in the spotlight recently as an alternative material for sand and plastic drain board etc. Natural fiber drain has not only competitive price but also a characteristic of assimilation into the soils after finishing of its own function. Discharge capacity of the fiber drain board evaluated by triaxial type discharge capacity test was relatively lower than that of plastic drain board. Nevertheless, settlement and pore pressure dissipation behaviors of the fiber drain board and the plastic drain board which were installed in the clayey soil during the composite discharge capacity test were almost similar. It was also found that biodegradation of the fiber drain board was in progress until 18 month after installation in the clayey soil, but they had still enough engineering properties to use at field.

Discharge Capacity of Environmentally Friendly Drains (친환경배수재의 통수능 특성 평가)

  • Cho, Sam-Deok;Kim, Ju-Hyong;Jung, Seung-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • Discharge capacity of the fiber mat and the fiber drain made with natural fibers abstracted from plant source was evaluated by permeability test for fiber mat and Delft type test and composite discharge capacity test using disturbed clayey soils for fiber drain. The permeability test results for environmentally friendly coconut fiber mat prove that fiber mat has outstanding permeability in substituting permeable sand. However, discharge capacity of fiber drain evaluated by conventional Delft type discharge capacity test was relatively lower than that of plastic drain board. Nevertheless, settlement and pore pressure dissipation behaviors of fiber drain and plastic drain board installed clay soil during the composite discharge capacity test were almost similar to that of plastic drain board. It is found that the natural fiber drain satisfies requiring minimum discharge capacity in substituting the conventional plastic drain board.

  • PDF

A Study on the Improvement of Discharge Capacity of Natural Fiber Drain (천연마섬유배수재의 통수능력 향상에 관한 연구)

  • 김지용;한상재;강민수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.279-284
    • /
    • 1999
  • Fiber drain(FD), which is made of organic fibers from jute and coir, has recently been used in several construction projects in the Southeast and East Asia region involving the soil improvement of reclamation fills overlying marine clay. FD is an environmentally friendly product that will naturally be biodegraded into soil after the completion of performance duration as a vertical drain. However, the conventional FD has limited and low-ranged discharge capacity compared to PVD. For this, in this study, the improvement of FD was attempted and new shaped FDs were evaluated by laboratory tests. A series of discharge capacity test was performed to investigate the functional applicability for several types of FDs.

  • PDF

Soil Improvement using Vertical Natural Fiber Drains (연직천연섬유배수재를 이용한 연약지반 개량)

  • Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.37-45
    • /
    • 2008
  • A pilot test using environmentally friendly drains, was carried out to evaluate their applicability potential in the field. The pilot test site was divided into 5 different areas, with several combinations of vertical and horizontal drains installed for evaluation. Conventional natural fiber drains (FDB), new developed straw drain board (SDB) and plastic drain board (PDB) were used as vertical drains, while sand and fiber mats were used as horizontal drains. Surface settlement rates and excess pore pressure generation/dissipation tendency of PDB and FDB are almost identical except those of SDB. Cone tip resistance obtained from cone penetration test measured at the end of 1st consolidation stage for upper soft layer definitely increased irrespective of types of vertical drains. The monitoring and site investigation test data obtained at the pilot test site prove the vertical natural fiber drains can be used as substitutes of conventional plastic and sand material.

  • PDF

A Pilot Test of Various Vertical Drains and its Initial Monitoring Results (다양한 연직배수재의 시험시공 및 초기현장 계측)

  • Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • Although the discharge capacity of the natural fiber drains are very low compared to that of plastic drain board (PDB), it is found that the conventional fiber drains and the new developed straw drain boards have great potential for use as a substitute for conventional plastic drain boards through several model tests. To verify their field application, a pilot test using environmentally friendly drains is also being carried out to prove their effective discharge capacity in the field. The pilot test site was divided into 5 different areas, with various combinations of vertical and horizontal drains installed for evaluation. Definite characteristics of various drains are still to be found due to the delay in construction of embankment. Consolidation behavior of three types of vertical drains and two types of horizontal drains will be analyzed after the completion of the embankment in the near future.

  • PDF

A Long Term Characteristics of Hydraulic Conductivity and Tensile Strength of Natural Fiber Drain with respect to Installation Conditions (천연섬유배수재의 타설 조건에 따른 장기 투수계수 및 인장강도의 특성)

  • Jang, Jin-Young;Jang, Yeon-Soo;Cho, Sam-Duck
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Long term changes of hydraulic properties and tensile strength of natural fiber drain (NFD) are analyzed and compared with those of intact NFD's. NFD was buried in distilled water, two types of seawater and clay soils obtained in southern and western parts of Korea, Kwang-Yang and Si-hwa. Specimens are taken out in 0, 3, 9 and 18 month intervals, and durability tests of the NFD are performed. Hydraulic conductivity of the NFD samples decreased compared with that of intact NFD samples, because clay particles easily passed to coarsened mesh of filters and clogged the porous stone below and reduced hydraulic conductivity. Tensile strength of drains from the soil bucket is reduced larger than those in the seawater and the distilled water. Strength reduction was higher in summer than winter.

KINKING DEFORMATION OF PVD UNDER CONSOLIDATION OF NATURAL CLAY LAYER

  • Aboshi, Hisao;Inoue, Toshiyuki;Yamada, Yoshimitsu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.349-356
    • /
    • 2003
  • Almost every material of PVD (Prefabricated Vertical Drain) has the fatal problem on the condition - the length must shorten with the settlement of the surrounding grounds - which all PVDs must satisfy. Kinking deformation by buckling of PVD due to consolidation settlement Is discussed in this paper. A new testing device to clarify the deformation of PVD under consolidation of surrounding clay was developed and the fiber drain and a PVD made of plastics were compared under the same condition of consolidation using natural clay specimens. The results are also shown in this paper.

  • PDF