• 제목/요약/키워드: Natural condition

검색결과 3,360건 처리시간 0.029초

A Study on the Friction Behavior of Natural Rubber

  • Kim, W.D.;Kim, D.J.;Nah, Chang-Woon;Lee, Y.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.193-194
    • /
    • 2002
  • The frictional characteristics of natural rubber plates under various conditions including sliding speed, contacted ball size, and lubrication conditions were evaluated experimentally. The frictional force and the normal force were measured by a self-made tester pin and a load cell with strain gages. In the lubrication condition, the effect of sliding speed was not significant over tested speed range. But in the none-lubrication condition, according to increase the sliding speed, the friction coefficient was decreased. The coefficients of friction under various lubrication conditions were varied from 0.03 to 0.32 and under none-lubrication condition was varied from 2.54 to 4.74.

  • PDF

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

인공양빈공법에 관한 실험적 연구 (An Experimental Study on the Beack Nourishment Method of Beach)

  • 민병형;옥치율;김가현;최도식
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.163-169
    • /
    • 1988
  • A beach nourishment method can be used as one of the beach. The beach nourishment is affected br a natural condition and an artificial condition; a natural condtion include conditions of bottom slope, diameter of bottom materials and wave, and an artificial condition include deposit position, method, diameter and quantity of the nourishing sand. To obtain and the best diameter of the nourishing sand a two-dimensional hydraulic model test, which simulates the erosional beach, has been accmplished. In this study the protection of the beach erosion can be maximized when the nourishing sand of 0.84mm in diameter, which is about 2.5-3.5 times of the natural bottom materials in diameter.

  • PDF

캐비티내에서 표면복사를 고려한 2차원 층류 자연대류 열전달 (Two-Dimensional Laminar Natural Convection Heat Transfer with Surface Radiation in a Cavity)

  • 박희용;박경우;한철희
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.217-232
    • /
    • 1992
  • A Numerical study on two-dimensional laminar natural convection with and without surface radiation in fully or partially open square cavity was performed. The cavity has one vertical heated wall facing a vertical opening and two horizontal insulated walls. The pressure boundary condition was applied to the opening instead of the velocity boundary condition. The results of this study showed that the increase of partition length decreased the convective and the radiative Nusselt numbers. It was also found that the increase of wall emissivity decreased the convective Nusselt numbers but increased the radiative Nusselt numbers.

  • PDF

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

수정된 내부 에너지 비평형 1차 외삽 경계조건을 적용한 열 유동 격자 볼츠만 모델에 관한 수치적 연구 (Numerical Simulation of Thermal Lattice Boltzmann Model with a Modified In-Ternal Energy Non-Equilibrium First-Order Extrapolation Boundary Condition)

  • 정해권;김래성;이현구;이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.620-627
    • /
    • 2007
  • In this paper, we adapt a modified internal energy non-equilibrium first-order extrapolation thermal boundary condition to the thermal lattice Boltzmann model (TLBM). This model is the double populations approach to simulate hydrodynamic and thermal fields. The bounce-back boundary condition which is a traditional boundary condition of lattice Boltzmann method has only a first order in numerical accuracy at the boundary and numerical instability. A non-equilibrium first-order extrapolation boundary condition has been verified to be of better numerical stability than the bounce-back boundary condition and this boundary condition is proved to be of second-order accuracy for the flat boundaries. The two-dimensional natural convection flow in a square cavity with Pr=0.71 and various Rayleigh numbers are simulated. The results are found to be in good agreement with those of previous studies.

단순지지 경계조건을 가진 임의 형상 평판의 효율적인 고유진동수 추출을 위한 NDIF법의 대수 고유치 문제로의 정식화 (A Formulation of NDIF Method to the Algebraic Eigenvalue Problem for Efficiently Extracting Natural Frequencies of Arbitrarily Shaped Plates with the Simply Supported Boundary Condition)

  • 강상욱;김진곤
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.607-613
    • /
    • 2009
  • A new formulation of NDIF method to the algebraic eigenvalue problem is introduced to efficiently extract natural frequencies of arbitrarily shaped plates with the simply supported boundary condition. NDIF method, which was developed by the authors for the free vibration analysis of arbitrarily shaped membranes and plates, has the feature that it yields highly accurate natural frequencies compared with other analytical methods or numerical methods(FEM and BEM). However, NDIF method has the weak point that it needs the inefficient procedure of searching natural frequencies by plotting the values of the determinant of a system matrix in the frequency range of interest. A new formulation of NDIF method developed in the paper doesn't require the above inefficient procedure and natural frequencies can be efficiently obtained by solving the typical algebraic eigenvalue problem. Finally, the validity of the proposed method is shown in several case studies, which indicate that natural frequencies by the proposed method are very accurate compared to other exact, analytical, or numerical methods.

난방기 중 이중외피 시스템의 자연환기 성능분석에 관한 실험적 연구 (Experimental Study on Natural Ventilation Performance of Double Facade System in Heating Period)

  • 이건호;김현수;고영우;손영주
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.43-50
    • /
    • 2006
  • A Double Facade System(DFS) is well known as an innovative solution of ecological facade in the west european countries. There are more than 200 various realized DFS in Germany. At the same time, the korean engineers have researched to find out the physical advantages of DFS in the moderate korean climate, which has a very humid summer with high temperature and a dry winter with low temperature. For example, the monthly mean temperature in Korea comes up to 28K, while that in Germany comes up to only 19K. That is, why a other solution of DFS is needed in Korea. This study has experimented the physical performance of the natural ventilation in the heating period. The preheating function of the cold air by DFS can improve no doubt the performance of the natural ventilation at the cold season as well as spring and autumn. The physical difference between single and double facade on natural ventilation has been tested at the newly constructed laboratory, which can turn $360^{\circ}$ to confirm the characteristic of a facade with the various directions. The results show the natural ventilation of the DFS has definitely much more comfortable than that of the single facade system. The air velocity of the inflow as well as the air temperature in the DFS provide a more stable condition than in the SFS. The theoretical limit(air velocity max 0.2m/s, air temperature min. $18^{\circ}C$, temperature difference between 100mm and 1700mm height max. 3K) on the indoor comfortableness doesn't go over in the DFS. On the other hand, the SFS showed an unstable condition with an excess of comfortableness limit on air velocity as well as temperature. In view of the researching results so far achieved, the research came to a conclusion, that the DFS can provide a more comfortable indoor condition by the preheating in the heating period than a SFS, and the period of natural ventilation in winter time could be definitely increased at the DFS.

아마란스 식물의 천연염재로서의 유효성 연구: 모직물 염색을 중심으로 (Efficacy of Amaranth(Amaranthus spp. L.) Plant as a Natural Dye Resource: Focused on Wool Dyeing)

  • 여영미;신윤숙
    • 한국염색가공학회지
    • /
    • 제32권2호
    • /
    • pp.89-95
    • /
    • 2020
  • In this study, the efficacy of Amaranth(Amaranthus spp. L.) as a natural dye resource was investigated for wool fabrics. It is known that a large amount of flavonoid and anthocyanin colorant are contained in leaves and stems, as well as red flowers. The optimum condition of dyeing was 1.3% of dye concentration(o.w.b.) at 100℃ for 60 minutes, resulting the K/S value, 23.43 and R Munsell color on the wool fabrics. Al, Fe, Zinc and Titanium were used as a mordant. The mordant improved the dye uptake, regardless of the mordant type and mordant method. The pre-mordanting method was more effective than the post-mordanting method. Al pre-mordanted fabric showed the highest K/S, 30.02. Light fastness and washing fastness were high in grades 4-5 and 5, and rubbing fastness was good in grades 4 and 4-5 in dry condition, but low in grades 2-3 and 3 in wet condition. The dry cleaning fastness was excellent in all 5 grades. However, the alkaline perspiration fastness ratings were low in grades 2-3 and 3. The results show Amaranthus spp. L. colorant can be used as a functional natural dye for wool fabrics.

Survey evaluation of thermal boundary condition in the inside and outside of double skin facade

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.29-35
    • /
    • 2015
  • Purpose: Double skin facade is a representative advantageous passive technology of building skin in the aspect of energy saving and environment improvement, reduces heat loss with buffer space in winter season and enhances indoor air and comfort of residents by activating natural ventilation in mid-season. However, in summer season, temperature increase in the intermediate space due to solar energy from exterior transparent skin could be a potential problem; also, relatively weak buoyancy of air caused by low density difference between double-skin facade could increase cooling load as air of intermediate space in high temperature hangs. However, proof data is insufficient to objectify such phenomenon. Method: In this study, researchers surveyed air temperature of intermediate space and airflow and diagnosed its cause targeting on applied multistory facade in the building which gives thermal uncomfort to residents. Also, the researchers produced Solar-air heat transfer coefficient meter, measured thermal boundary condition of double-skin facade, and presented the result of measurement as an objectified verification material regarding overheating phenomenon in the intermediate space of double-skin facade in summer season. Result: Inefficient condition was verified that total heat increases and overheating due to insufficient natural ventilation in multistory facade. In addition, logic behind preceding research was objectified and verified regarding high temperature phenomenon in the intermediate space which could increase cooling load in summer season.