• Title/Summary/Keyword: Natural change

Search Result 3,858, Processing Time 0.031 seconds

Model-Based Damage Detection Methods for Structural Health Monitoring of PSC Bridges (PSC교량의 구조건전성 모니터링을 위한 모델기반 손상검색기법)

  • 박재형;이병준;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.550-557
    • /
    • 2004
  • In this paper, structural damage in PSC bridges is monitored by using model-based damage detection methods. First numerical experiments on the test structure are described. Dynamic responses of the test structures are obtained fur several damage scenarios. The change in natural frequency and the change in nude shape curvature are selected as features to represent the states of the structure. Next a damage localization algorithm from monitoring the changes in natural frequency is outlined. Also, the damage localization algorithm from monitoring the changes in nude shapes is outlined. Finally, the damage localization algorithms are used to predict damage in the test structure. The results of the analysis indicate that the model-based damage detection methods correctly predicted damage in the test structure.

  • PDF

Stress and Vibration Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge (원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 응력 및 진동해석)

  • 한근조;이성욱;심재준;한동섭;안찬우;서용권;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.118-125
    • /
    • 2003
  • In this study, we carried out the finite element analysis for the screw of centrifuge that is the weakest part of the centrifuge for sewage management. Centrifugal force caused by rotation with velocity of 4000rpm was applied at the screw. Structural analysis was done with respect to the change of the ratio of blade pitch($R_P$), shaft diameter($R_D$) and extended hole($R_E$). When the area of circular hole is equal to that of extended holes, maximum equivalent stresses in the screw with circular and extended circular hole were compared. And then natural frequency analysis was executed for the same model. Three mode shapes were used to explain the vibration characteristics of each screw. Convergence study was accomplished fur more accurate results.

Dynamic Analysis of HDD Spindle Motor Unit; Cover. Base (HDD 스핀들 모터 유니트 및 커버, 베이스의 동특성 해석)

  • 이성진;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.832-936
    • /
    • 1996
  • In this paper, we study a dynamic characteristics of HDD. HDD is constructed by spindle motor/disk unit, cover, base, E-block arm/suspension unit, and rotary actuator/voice coil motor. First, we make a FE model of spindle motor/disk unit and analyzed natural frequency/mode analytically and experimentally. Especially, the change of natural frequecy of spindle motor unit according to change of B.C is considered. Second, FE model of cover, base is made. Third, we assemble the above three FE mode, we get HEE assembly and dynamic analysis of HDD assembly is accomplished.

  • PDF

Enhancement of bent transfer in the liquid bath by ultrasound (액상용기에서 초음파에 의한 열전달촉진)

  • Kang Won-Jong;Oh Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.655-658
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat-flux boundary conditions unlike many of the previous researches, which had adopted constant wall-temperature conditions. Therefore in the study, modified dimensionless numbers such as Stefan and Rayleigh were adopted to represent heat transfer results. The experimental results revealed that ultrasonic vibrations accompanied the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion, accelerating the melting process as much as 2.5 times, compared with the result of natural melting (i. e., the case without ultrasonic vibration). Such effects are believed to be a prime mechanism in the overall melting process when ultrasonic vibrations were applied. Subsequently, energy could be saved by applying the ultrasonic vibrations to the natural melting In addition, various time-wise dimensionless numbers provided a conclusive evidence of the important role of the ultrasonic vibrations on the melting phenomena of the PCM.

  • PDF

A Shaking Table Test of Small Isolation System Considering the Floor Response (층응답을 고려한 소형면진장치의 진동대실험)

  • Kim, Min-Kyu;Choun, Young-Sun;Lee, Kyung-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

Damping Effects of a Flexible Structure Interacting with Surrounding Acoustic Fluid (주변 음장과 연동하는 탄성 구조체의 감쇠 효과)

  • Lee, Moon-Seok;Park, Youn-Sik;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.718-724
    • /
    • 2008
  • A flexible structure submerged in acoustic fluid is affected by its surrounding fluid. In this case, the coupling effects between structures and surrounding fluid have an effect on the submerged structure as external force and change impedance of acoustic domain. Therefore, the coupling effects by its surrounding fluid complicatedly change the characteristics of a submerged structure such as natural frequencies and damping coefficients. In this paper, using the analytic modal equation of a spherical shell surrounded by water and air, the complex changes of damping coefficients and natural frequencies of submerged structures are studied for various external acoustic fluid and structures.

Temporal Change of River Shape due to Urbanization in Dhobikhola, Kathmandu (도시화에 따른 하천의 변화탐지 - Dhobikhola, Kathmandu를 중심으로)

  • Yang, In-Tae;Acharya, Tri Dev;Shin, Moon-Seung
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.55-58
    • /
    • 2015
  • Natural shifting of rivers has been disturbed by anthropological activities. Urbanization in Kathmandu has been encroached the natural floodplain of Bagmati and currently channeled by training walls. The study compares the change in shape of Dhobikhola, a small tributary using 1966 and 2014 satellite images. It has been found that the original shape is heavily changed over time at the beginning and end section of river under study. The river width is now fixed by training walls and roads along the banks. Using multiple data sets like satellite images and GIS analysis, these shifts can be easily detected to plan for management and restoration of physical and ecological behaviors of rivers.

  • PDF

A Study of Cooling of Mobile Phone Using PCM Module (상변화 물질을 이용한 이동전화기의 냉각에 관한 연구)

  • Lee, Sang-Jin;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1173-1181
    • /
    • 2005
  • The cooling effect of a mobile phone using PCM(Phase Change Material) module has been numerically investigated. A transient three-dimensional numerical analysis of heat and fluid flow with natural convection is performed in this study. Governing conservation equations for mass, momentum and energy are solved by an implicit finite volume method. An enthalpy-porosity technique has been used for modeling of the melting process. Two different ways of placing the PCM module are considered. One is to place a PCM module between the substrate and battery pack, and the other is to place a PCM module between MCM(multichip module) and battery pack. Three different types of PCMs are used to predict the performance of PCM. The results show that passive cooling with PCM can reduce the temperature rise and the effect of natural convection in PCM module considered in this study is negligible.

Change of Physical Properties of Socks by Repeated Washing (반복세탁에 의한 양말의 물성변화에 관한 연구)

  • Song, Kyoung-Hun;Kim, Kyoung-A
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.191-198
    • /
    • 1996
  • We were investigated the change of shrinkage, pilling, tensile strength, color fastness and staining of Cotton, Nylon, Cotton/Nylon(60/40) socks after wearing and washing. From the experiment we found that color fastness of the color socks decreased corresponding to the frequency of wearing and washing. Our results showed that color fastness in the case of Cotton is best among them. Shrinkage was significant in Nylon/Cotton and Cotton socks. In the experiment of male and female socks, male showed a greater evidence of staining, shrinkage and pilling than female.

  • PDF

The expression and functional roles of microRNAs in stem cell differentiation

  • Shim, Jiwon;Nam, Jin-Wu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages—such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells—and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools. [BMB Reports 2016; 49(1): 3-10]