• Title/Summary/Keyword: Natural antibiotics

Search Result 233, Processing Time 0.03 seconds

Effects of Natural Compounds from Various Plant Eradicate the Persister Cell of Edwardsiella tarda Treated with Antibiotics of Florfenicol and Amoxicillin (천연 식물 추출물 첨가에 의한 어류 에드워드증(Edwardsiellosis) 발생균인 Edwardsiella tarda에 항생제 투여로 생성되는 persister cell 저감 효과)

  • Kim, Na-Kyoung;Kweon, Dae-Hyuk;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.788-793
    • /
    • 2012
  • High concentration of antibiotics has been used to treat the outbreak of edwardsiellosis caused by Edwardsiella tarda in aquaculture. However, not all of the bacteria have been killed with high concentrations of antibiotics treatment by the formation of persister cells with a dormant state. The main objective of this study was to kill persister cell using antibiotics with the addition of natural plant compounds. Antibiotics used in this study consist of 100 mg/ml florfenicol and 100 mg/ml amoxicillin. Ten natural plant compounds with persister cell inhibitor activity to E. coli were obtained from Protein Engineering and Systems Biology Lab. of Sungkyunkwan University. The persister cell inhibition activities of those natural plant compounds were evaluated in test tube. Concentrations of the antibiotics were in the ranges of 25~200 ${\mu}g/ml$. The persister cell formation was observed after 16 hours of culture. Persister cells were killed by antibiotics with natural plant compounds. Among ten natural plant compounds, Gynostemma pentaphyllum, Mallotus japonicus, and Orixa japonica showed persister cell formation inhibition activities. The optimal concentrations of G. pentaphyllum, M. japonicus, and O. japonica for the inhibitor of persister cell formation were 100 ${\mu}g/ml$, 100 ${\mu}g/ml$, and 200 ${\mu}g/ml$, respectively. In vivo study was carried out to evaluate the effect of the antibiotics with natural plant compounds using aquacultural fish, olive flounder, as test animals. G. pentaphyllum, M. japonicus, and O. japonica of 30 ${\mu}g/ml$, 10 ${\mu}g/ml$, and 10 ${\mu}g/ml$ with antibiotics reduced cumulative mortalities, showing the effectiveness of persister cell inhibition.

New Polyene Macrolide Antibiotics from Streptomyces sp. M90025

  • Seo, Young-Wan;Cho, Ki-Woong;Lee, Hyi-Seung;Yoon, Tae-Mi;Shin, Jong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.176-180
    • /
    • 2000
  • Three polyene macrolide antibiotics including two new compounds were isolated from the culture mycelia of a Streptomyces species. The structures of these metabollites were determined as elizabethin, a previously reported 28-membered macrolide and two analohs, using combined spectroscopic methods. These compounds exhibited antifungal activity and cytotoxicity against a juman leukemia cell.

  • PDF

Antibacterial Effect of Amentoflavone and Its Synergistic Effect with Antibiotics

  • Hwang, Ji Hong;Choi, Hyemin;Woo, Eun-Rhan;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.953-958
    • /
    • 2013
  • Selaginella tamariscina is a traditional herb used in medicine. Phytochemical amentoflavone, a biflavonoid class of flavonoids, was isolated from the plant of Selaginella tamariscina. In this study, the antibacterial effects and combination effects of amentoflavone and conventional antibiotics such as ampicillin, cefotaxime, and chloramphenicol were investigated. These results showed that amentoflavone had a considerable antibacterial effect and synergistic interaction with antibiotics against various bacterial strains (fractional inhibitory concentration index ${\leq}$ 0.5), except for Streptococcus mutans. To study the mechanism(s) involved in the synergistic activities between amentoflavone and antibiotics, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein and measured the $NAD^+/NADH$ ratio by $NAD^+$ cycling assay. The results indicated that the formation of hydroxyl radical would be a cause of the synergistic effect and that this oxidative stress originated from a transient NADH depletion. This study suggests that amentoflavone synergizes with antibiotics and has potential as a therapeutic agent for antimicrobial chemotherapy.

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

Effect of Berberine and Some Antibiotics on the Growth of Microorganisms (벨베린과 수종 항생제가 세균발육에 미치는 영향)

  • Chi, Hyung-Joon;Woo, Yung-Sook;Lee, Yong-Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 1991
  • The combined effect of berberine isolated from the bark of Phellodendron amurense and some antibiotics was evaluated in order to measure the antibiotic activities. In this study, in the presence of streptomycin, tetracycline, cephradine as antibiotics, Staphylococcus aureus, Escherichia coli, Shigella sonnei as microorganisms were grown in an Automated Microbiology System. In case of Staphylococus aureus, combination with berberine and cephardine resulted in the strongest synergistic activity and in case of Escherichia coli and Shigella sonnei, combination with berberine and streptomycin resulted in the strongest synergistic activity. The combination with berberine and antibiotics increased the antibiotic activities, thereby showing a synergistic action.

  • PDF

Natural Antibiotics: Antimicrobial Peptides (천혜의 항생제: 항균펩티드)

  • Kim, Yeon-Sook;Kim, Jeong-Jae;Choi, Young-Nim
    • The Journal of the Korean dental association
    • /
    • v.41 no.2 s.405
    • /
    • pp.116-123
    • /
    • 2003
  • Antimicrobial Peptides are natural antibiotics evolved by many plants, invertebrate, and vertebrate to defend against the microbial infection. Antimicrobial peptides show a broad-spectrum antimicrobial activity with little opportunity for the development of resistance since they target microbial membranes that distinguish microbes from enkaryotic cells. The oral cavity is constantly exposed to microbial challenges and antimicrobial peptides play an important role in managing the oral health. With the increase of resistant micro-organisms to conventional antibiotics, antimicrobial peptides are attracting interests as novel antibiotics. In this review, the characteristics of antimicrobial of antimicrobial peptides including the classification, mechanism of action, resistance, and expression in the oral cavity have been discussed in the prospects of application to oral disease.

  • PDF

Activity of Essential Oil from Mentha piperita against Some Antibiotic-Resistant Streptococcus pneumoniae Strains and Its Combination Effects with Antibiotics

  • Choi, Sung-Hee;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • To investigate natural antibiotics from plant essential oils and to evaluate their synergism with current antimicrobial drugs in inhibiting antibiotic-resistant strains of Streptococcus pneumoniae. The minimal inhibitory concentrations (MICs) of eleven plant essential oils and their main components were established for two antibiotic-susceptible and two antibiotic-resistant strains of S. pneumoniae, using broth microdilution tests. Potential synergism with oxacillin, norfloxacin, or erythromycin was evaluated using a checkerboard microtitre assay. Among the tested oils, Mentha piperita oil and its main component, menthol, exhibited the strongest inhibitory activities against all of the tested strains. The activity of antibiotics against antibiotic-resistant strains of S. pneumoniae was enhanced significantly by combination with Mentha piperita oils and its main component, menthol. In conclusion, the combination Mentha piperita essential oil or menthol with antibiotics could be used to reduce the effective dose of antibiotic and to modulate the resistance of S. pneumoniae strains.

Improving productivity in rabbits by using some natural feed additives under hot environmental conditions - A review

  • Magdy Abdelsalam;Moataz Fathi
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.540-554
    • /
    • 2023
  • Heat stress is a major challenge to animal production in tropical and subtropical climates. Rabbits suffer from heat stress more than farm animals because they have few sweat glands, and their bodies are covered with thick fur. Intensive farming relies on antibiotics as antimicrobials or growth promoters to increase animals' productivity and health. However, the European Union and many countries have banned or restricted the use of antibiotics in animal feed for human health concerns. Several studies have found that replacing antibiotics in rabbit feed with natural plants or feed additives increases productivity and improves immune capacity, especially under heat stress conditions. Growth performance, immune response, gut microflora, and carcass yield may be increased in rabbits fed a diet supplemented with some natural plants and/or propolis. In this review article, we discuss and summarize the effects of some herbs and plant extracts as alternative feed additives on rabbit productivity, especially for those raised under hot ambient temperatures.

In vivo and In vitro Antimicrobial Effects of Natural Antibiotics Present in Crude Extracts of Various Medicinal Plants (천연 약용자원 추출물의 인수공통 감염 세균에 대한 in vivo 및 in vitro에서의 항균 효과)

  • Lee, Moon Geon;Khan, Muhammad Imran;Seo, Hyo Jin;Shin, Jin Hyuk;Kim, Min Yong;Kim, Jong Deog
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • Bacteria are among the most common causes of severe diseases in both plants and animals. Salmonella spp. has deleterious effects and is the cause of various transmittable diseases. Because of strains resistivity, side effects and high prices of synthetic antibiotics, it has become essential to explore safe and economical natural sources of antibiotics. In this study, growth inhibitory effects of natural antibiotics present in crude extracts of Galla rhois, Thujae semen, Paeonia japonica, and Armeniacae semen were investigated both in vivo and iv vitro. Ethanol extracts of the above-mentioned plants were prepared and tested against seven serovars of Salmonella and Escherichia coli by disc diffusion method. In addition, the antibacterial effects of the plant extracts were determined in vivo using ducks as model animals. Reverse transcription-polymerase chain reaction was performed using blood and fecal samples of control, infected, and treated groups of the ducks to determine the gene expression levels of the bacteria. Our results confirmed that the Galla rhois ethanol extract had the highest antibacterial activity among the plant extracts when they were used individually. However, the Galla rhois, Thujae semen, and P. japonica ethanol extracts showed stronger antibacterial effects against all the bacterial species used when the extracts were combined at a ratio of 3:3:2, respectively.

Isolation and Numerical Identification of Streptomyces Strains Producing Inhibitors of Fungal Cell Wall Synthesis (진균 세포벽 형성 저해물질 생성 Streptomyces속 세균의 분리 및 수리동정)

  • Suh, Won-Na;Park, Jung-Hee;Lee, Ji-Young;Kim, In-Seop;Lee, Kye-Joon;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.27-36
    • /
    • 1996
  • The aim of the present research program was to identify and develop strains of actinomycetes producing antifungal antibiotics which inhibit cell wall biosynthesis. 860 strains of Actinomycetes were isolated from various soil samples. Three isolates, EMS4, EMP22, and L234 were selected as the strains producing antifungal antibiotics inducing abnormal morphology against Penicillium cyclopium, Cryptococcus laurentii, and Aspergillus flavus, respectively. Taxonomic unit characters of the strains were tested and the data were analyzed numerically using TAXON program. EMS4, EMP22, and L234 were indentified to be a member of Streptomyces lavendulae, Streptomyces willmorei, and Streptomyces aburaviensis, respectively.

  • PDF