• Title/Summary/Keyword: Natural Preservatives

Search Result 175, Processing Time 0.025 seconds

The Effect of Chitosan Coating Combined with Carvacrol and Thymol on Microbial and Quality Characteristics of Litopenaeus vannamei during Cold Storage (Carvacrol과 thymol을 병행처리한 키토산 코팅이 냉장저장 시 흰다리 새우의 미생물 및 품질 특성에 미치는 효과)

  • Ko, Bong Soo;Park, Mi-Jung;Gwak, Seung-Hae;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.363-370
    • /
    • 2017
  • In this study, we stored frozen shrimp (Litopenaeus vannamei) at $4^{\circ}C$ during 12 days and investigated the effect of chitosan coating with natural preservatives (0.05% carvacrol, 0.05% thymol) on the growth of microorganism (mesophilic bacteria, psychrophilic bacteria, Pseudomonas spp., $H_2S$ producing bacteria) and physiological characteristics (total volatile basic nitrogen and pH) and sensory evaluation (appearance, odor and general acceptance). Chitosan coating with natural antimicrobial compounds (0.05% carvacrol and 0.05% thymol) had inhibited the growth of all the target microorganism and showed the significant antimicrobial activity (p < 0.05) to mesophilic bacteria, psychrophilic bacteria and $H_2S$ producing bacteria until 12 day (the last day of this study). These treated groups had showed the significant difference (p < 0.05) in total volatile basic nitrogen and all the sensory characteristics but not in pH. Therefore, chitosan coating combined with natural antimicrobial compounds (0.05% carvacrol and 0.05% thymol) showed the effective antimicrobial activity on major spoilage microorganism on shrimp and could be used to elongate the shelf life of refrigerated shrimp.

Effect of Moss (Hypnum jutlandicum) Extracts and Mixing Treatments with Preservatives on Vase Life of Rosa hybrida 'Enjoy' (이끼 추출물과 절화 보존제 혼용처리가 절화장미 'Enjoy'의 수명에 미치는 영향)

  • Park, Kyoung-Hee;Shin, So-Lim;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • This study was performed to develop a natural preservative which had the most successful effect on prolonging the vase life of cut flowers Rosa hybrida 'Enjoy'. To determine the effect of sucrose on vase life of cut roses, R. hybrida 'Enjoy', 0, 1, 3 or 5% of sucrose was mixed with Hypnum jutlandicum extract. The result showed that in the case of adding sucrose to extracts from H. jutlandicum, vase life of cut flowers was shortened, along with the cut flowers losing chlorophyll, becoming decolorized and finally showing wilting phenomenon. However, using hydroxy quinoline sulfate (HQS) and extracts from H. jutlandicum together exhibited an improved effect of prolonging vase life, especially when adding 100 $mg{\cdot}L^{-1}$ HQS, which had the effect of prolonging the vase life of R. hybrida 'Enjoy' the most. Regarding pH of extracts, 2 $mg{\cdot}L^{-1}$ of extracts from H. jutlandicum show originally pH 3.8. This was compared with adjusted extract solutions as pH 3.0, 4.0 or 5.0. The results showed that the solution of pH 3.8 had the most successful effect on prolonging the vase life of R. hybrida 'Enjoy'. Given all the results, H. jutlandicum extract (2 $mg{\cdot}L^{-1}$) and HQS (100 $mg{\cdot}L^{-1}$) was the most effective in prolonging the vase life of cut R. hybrida 'Enjoy'. Moss is expected to be worth developing as a natural preservative since it is easy to get and causes no damage to the environment.

Comparison of In vitro Anti-Biofilm Activities of Natural Plant Extracts Against Environment Harmful Bacteria (천연물 성분을 이용한 환경 유해미생물의 biofilm 생성 저해능 비교에 관한 연구)

  • Kang, Eun-Jin;Park, Ji Hun;Jin, Seul;Kim, Young-Rok;Do, Hyung-Ki;Yang, Woong-Suk;Lee, Jae-Yong;Hwang, Cher-Won
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.225-233
    • /
    • 2019
  • In this study, we investigated the in vitro anti-biofilm activities of plant extracts of chives (Allium tuberosum), garlic (Allium sativum), and radish (Raphanus sativus L.) against environment harmful bacteria (gram-positive Staphylococcus aureus and, gram-negative Salmonella typhimurium and Escherichia coli O157:H7). In the paper disc assay, garlic extracts exhibited the highest anti-biofilm activity. The Minimal Inhibitory Concentration (MIC) of all plant extracts was generally higher for gram-negative bacteria than it was for gram-positive bacteria. Gram-negative bacteria were more resistant to plant extracts. The tetrazolium dye (XTT) assay revealed that, each plant extract exhibited a different anti-biofilm activity at the MIC value depending on the pathogen involved. Among the plant extracts tested, garlic extracts (fresh juice and powder) effectively reduced the metabolic activity of the cells of food-poisoning bacteria in biofilms. These anti-biofilm activities were consistent with the results obtained through light microscopic observation. Though the garlic extract reduced biofilm formation for all pathogens tested, to elucidate whether this reduction was due to antimicrobial effects or anti-biofilm effects, we counted the colony forming units of pathogens in the presence of the garlic extract and a control antimicrobial drug. The garlic extract inhibited the E. coli O157:H7 biofilm effectively compared to the control antimicrobial drug ciprofloxacin; however, it did not inhibit S. aureus biofilm significantly compared to ciprofloxacin. In conclusion, garlic extracts could be used as natural food preservatives to prevent the growth of foodborne pathogens and elongater the shelf life of processed foods.

Studies on the Development of Natural Preservatives from Natural Products (전통식품 및 천연물에서 천연보존료 개발에 관한 연구)

  • Kim, Hee-Yun;Lee, Young-Ja;Hong, Ki-Hyoung;Kwon, Yong-Kwan;Lee, Ju-Yeun;Kim, So-Hee;Ha, Sang-Chunl;Cho, Hong-Yon;Chang, Ih-Seop;Lee, Chul-Won;Kim, Kil-Saeng
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1667-1678
    • /
    • 1999
  • Certain parts of 190 kinds of medicinal herbs and 171 kinds of original materials of food were extracted by methanol. The extracts were tested their microbial inhibition activities against several food spoilage microorganisms, Micrococcus luteus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli, Saccharomyces cerevisiae, Candida albicans, Penicillium citrinum, Aspergillus flavus and Aspergillus niger. The methanol extracts of Cornus officinalis, Evodia officinalis, Glycyrrhiza glabra, Salvia miltiorrhiza. Schizandrae fructus, Coptidis rhizoma, aroma hop and bitter hop were shown inhibitory effect on certain species of gram(+) bacteria. Aroma hop and bitter hop were shown inhibitory effect on certain species of gram(-) bacteria. The methanol extract of Salvia miltiorrhiza exhibited a strong antibacterial activities. It was purified by solvent fractionation, silicagel column chromatography, prep. TLC, prep. HPLC. The purified active substance was identified as cryptotanshinone by EIMS, $1^H-NMR,\;{13}^C-NMR$ and DEPT. Cryptotanshinone showed a strong antibacterial activity against gram positive bacteria $(MIC\;:\;3.91{\sim}62.50\;{\mu}g/mL)$. Especially, this compound was the most strong activity against Bacillus subtilis $(MIC\;:\;3.91\;{\mu}g/mL)$.

  • PDF

Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Jeon, Hye-Lin;Eom, Su Jin;Yoo, Mi-Young;Lim, Sang-Dong;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.427-434
    • /
    • 2016
  • Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

Changes in Quality Characteristics of Pork Patties Containing Antioxidative Fish Skin Peptide or Fish Skin Peptide-loaded Nanoliposomes during Refrigerated Storage

  • Bai, Jing-Jing;Lee, Jung-Gyu;Lee, Sang-Yoon;Kim, Soojin;Choi, Mi-Jung;Cho, Youngjae
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.752-763
    • /
    • 2017
  • Marine fish skin peptides (FSP) have been widely studied due to their antioxidant and antimicrobial properties. We aimed to use a natural antioxidant, FSP, to replacing synthetic preservatives in a pork patty model, which is safer for human body. Moreover, nano-liposome technology can be applied for masking the fishy smell and improving the stability of this peptide. Therefore, in this study, the effects of FSP and FSP-loaded liposomes (FSPL) on pork patty were evaluated through the tests of thiobarbituric acid reactive substances (TBARS), color, cooking loss, texture, volatile basic nitrogen (VBN), and the pH value, during 14 d of refrigerated ($4^{\circ}C$) storage. The results showed that all FSP-treated patties had lower TBARS values than control patties, which indicated an inhibitory effect of FSP on lipid oxidation. This effect in the patties depended on the FSP concentration. However, FSPL-treated patties showed significantly higher and undesirable TBARS values compared to the control, and this effect depended on the FSPL concentration. None of the physicochemical results showed remarkable changes except the pH and VBN values. Therefore, this study provides evidence that FSP has great potential to inhibit the lipid oxidation of pork patties and is capable of maintaining the quality and extending the shelf life. However, it is necessary to study the application of FSP treatments greater than 3% to improve the antioxidant effect on pork patties and search for other coating materials and technology to reduce the drawbacks of FSP.

Effect of Gamma Irradiation on the Biological Activity and Color Change of Puerariae radix (감마선 조사가 칡의 생리 활성과 색상 변화에 미치는 영향)

  • 전태욱;박지혜;변명우
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.345-350
    • /
    • 2002
  • This study was carried out to determine the effect of gamma irradiated Puerariae radix extract on color removal, antioxidative, DPPH radical scavenging and antimicrobial efftcts. Puerariae radix were extracted with methanol and acetone and irrdiated 10, 20 and 30 kGy with gamma ray. Hunter color L-value increased by irrdiation in a dose dependent manner, resulting in brighter color. But a and b values decreased by irradiation in a dose dependent manner. Antioxidant activities of the Puerariae radix extract in soybean oil emulsion were higher in methanol extract than acetone extract. Scavenging effect of Puerariae radix extracts on DPPH radical with methanol was not changed by irradiation but acetone decreased Acetone extract from Puerariae radix showed antimicrobial activities in B. subtilis, B, natto, B, megaterium S, aureus, Sal, typhymurium and E. coli methanol extract also had the antimicrobial activities but weaker for Sal. typhymurium and E. coli. Results suggested that Puerariae radix extracts have a potential as a natural food preservatives and cosmetic raw material.

The Prevalence and Control of Spoilage Mold and Yeast in Cheese (치즈에서 부패를 일으키는 효모와 곰팡이의 다양성 및 저감법)

  • Kim, Jong-Hui;Kim, Bu-Min;Jeong, Seok-Geun;Oh, Mi-hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.152-161
    • /
    • 2017
  • Cheese is an excellent substrate for yeast and mold growth. These organisms can cause cheese spoilage, resulting in significant food wastage and economic losses. In the context of cheese spoilage, the presence and effects of spoilage or pathogenic bacteria are well documented. In contrast, although yeasts and molds are responsible for much dairy food wastage, only a few studies have examined the diversity of spoilage fungi. This article reviews the spoilage yeasts and molds affecting cheeses in various countries. The diversity and number of fungi present were found to depend on the type of cheese. Important fungi growing on cheese include Candida spp., Galactomyces spp., Debaryomyces spp., Yarrowia spp., Penicillium spp., Aspergillus spp., Cladosporium spp., Geotrichum spp., Mucor spp., and Trichoderma spp.. In addition, several mold spoilage species, such as Aspergillus spp. and Penicillium spp., are able to produce mycotoxins, which may also be toxic to humans. There are many ways to eliminate or reduce toxin levels in foods and feeds. However, the best way to avoid mycotoxins in cheese is to prevent mold contamination since there are limitations to mold degradation or detoxifications in cheese. Chemical preservatives, natural products, and modified atmosphere packaging have been used to prevent or delay mold spoilage and improve product shelf life and food safety.

Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract

  • Kim, Myung-Hee;Jo, Sung-Hoon;Ha, Kyoung-Soo;Song, Ji-Hye;Jang, Hae-Dong;Kwon, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1204-1209
    • /
    • 2010
  • We evaluated the antibacterial activities of selected edible Korean plant seeds against the food-borne pathogens Staphylococcus aureus KCTC1927, Escherichia coli KCTC2593, Salmonella typhimurium KCTC2054, and Bacillus cereus KCTC1014. While screening for antibacterial agents, we discovered that wheat germ extract contains 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and is highly inhibitory to S. aureus and B. cereus. This is the first report of the antibacterial activity of wheat germ extract. We also investigated the antibacterial activities of the 1,4-benzoquinone standards 1,4-benzoquinone (BQ), hydroquinone (HQ), methoxybenzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMBQ). DMBQ and BQ were the most highly inhibitory to S. aureus and S. typhimurium, followed by MBQ and HQ. MICs for DMBQ and BQ ranged between 8 and 64 ${\mu}g/ml$ against the four foodborne pathogens tested. DMBQ and BQ showed significant antibacterial activity; the most sensitive organism was S. aureus with an MIC of 8 ${\mu}g/ml$. BQ exhibited good activity against S. typhimurium (32 ${\mu}g/ml$) and B. cereus (32 ${\mu}g/ml$). The results suggest that wheat germ extract has potential for the development of natural antimicrobials and food preservatives for controlling foodborne pathogens.

Radial Variation in Selected Wood Properties of Indonesian Merkusii Pine

  • Darmawan, Wayan;Nandika, Dodi;Afaf, Britty Datin Hasna;Rahayu, Istie;Lumongga, Dumasari
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • Merkusii pine wood (Pinus merkusii) was extensively planted throughout Indonesia, where it is only indigenous in northern Sumatera, by the Dutch during colonial times. The demand for this wood species, especially in the domestic market, has increased notably, despite its limited durability regarding decay resistance. The purpose of this study was to investigate the occurrence of juvenile and mature wood on merkusii pine and to analyze its radial features from pith to bark based on density, shrinkage, static bending in modulus of rupture and modulus of elasticity, fiber length, microfibril angle, and durability. A segmented modeling approach was used to find the juvenile-mature transition. The graveyard test was performed to characterize the termite resistance from pith to bark of merkusii pine. The maturations were estimated to start at radial increments of 15 cm from the pith by fiber length and of 12 cm from the pith by microfibril angle. The projected figures for the proportion of juvenile wood at breast height were around 65%. The results also indicate that the pine wood was $0.52g/cm^3$ in density, 1.45 in coefficient of anisotropy, which indicates its good stability, 7597 MPa in modulus of elasticity, and 63 MPa in modulus of rupture. Natural durability against subterranean termite of the merkusii pine wood was rated to be grade 4 to 0 from pith to bark. However, after being treated by Entiblu and Enborer preservatives, its rating increased to grade 10 to 9.