• 제목/요약/키워드: Natural Organic Matter

검색결과 471건 처리시간 0.029초

총유기탄소와 화학적산소요구량을 이용한 낙동강 물관리 방안 (Water Management Plan for the Nakdong River Using TOC and COD)

  • 김보은;강미아;정교철
    • 지질공학
    • /
    • 제33권1호
    • /
    • pp.51-59
    • /
    • 2023
  • 낙동강은 수중 생태계의 안전을 위한 자연자원으로서의 기능뿐만 아니라 유역주민들이 상수원수로 사용하고 있다. 사람들의 생활에 이용될 여러 산업에서 발생시키는 폐수와 사람들이 뱉어내는 오·하수 등은 방류수 기준을 만족시켜 낙동강으로 유입시키고 있다. 낙동강본류에서 모니터링되어 공개되고 있는 50개 지점의 수질 자료를 활용하여 신·구 유기물질 항목 간의 상관성을 살펴보았다. 낙동강본류에서 나타나는 신유기물질 항목인 TOC와 구유기물질 항목인 COD는 결정계수(R2)가 0.6134로 나타나 상관성은 높다고 할 수 있다. TOC·COD를 이용하여 평가한 각 지점의 수질 등급에서는 그 차이가 무시할 수준을 넘어섬을 알 수 있다. 즉 COD를 대체하여 TOC를 활용하여 낙동강본류의 평가할 때 상대적으로 더 양호한 등급으로 나타났다. 따라서 TOC의 수질 등급을 재검토할 필요성이 여전히 남아있고 COD의 지속적인 모니터링이 요구된다고 할 수 있다. 이에 더해 신·구 유기물질에 영향을 미치는 인위적인 오염원과 자연적인 요소들에 대해 발생 원인이 명확하게 규명되어야 낙동강의 수질등급을 활용한 물관리가 가능할 것이다.

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

광촉매 공정에 의한 유기물 제거가 나노여과 공정에 미치는 영향 (Investigation of Photocatalytic Process on Removal of Natural Organic Matter in Nanofiltration Process)

  • 이규호;최인환;김인철;민병렬
    • 멤브레인
    • /
    • 제17권3호
    • /
    • pp.244-253
    • /
    • 2007
  • 광촉매 반응이 자연유기물에 의한 나노여과막의 오염에 미치는 영향을 살펴보았다. 광촉매 분해공정은 자연유기물의 분해와 변형에 효율적이었으며 이산화티타늄과 고정화 비드를 광촉매로 사용하였다. 광촉매적 특성을 비교하기 위하여 칼슘 이온 존재 시의 휴민산의 광분해를 모델 반응으로 설정하였다. 광분해 전에는 치밀한 막오염층이 형성되어 막오염을 가속화시킨 반면, 광분해 후에는 막오염이 크게 감소하였다.

Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles

  • Bae, Sujin;Hwang, Yu Sik;Lee, Yong-Ju;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • 제28권
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Objectives In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). Methods Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. Results The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. Conclusions This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

철과 양수성 물질을 이용한 PCE와 크롬 제거에 관한 연구

  • 조현희;천병식;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.68-71
    • /
    • 2004
  • Effects of surfactants and natural organic matter (NOM) on the sorption and reduction of tetrachloroethylene (PCE) and chromate with iron were examined in this study. PCE and chromate reduction by iron depended on the ionic type of the surfactants in this study. The apparent reaction rate constants of PCE with Triton X-100 and hexadecyltrimethyl ammonium (HDTMA) at one half and two times of the critical micelle concentration (CMC) were relatively higher than without surfactants because of the enhanced PCE partitioning and surface concentration. In the presence of sodium dodecyl benzene sulfonate (SDDBS) at 2000 mg/L and NOM at 50 mg/L, the apparent reaction rate constants of PCE increased, but TCE production decreased. The enhanced removal rate of PCE was not due to the dechlorination, and the sorption was dominant iron with SDDBS and NOM. The apparent reaction rate constants of chromate by iron with Triton X-100 and NOM were 1.4-3.1 times lower than without surfactants while that with HDTMA was two times higher than without HDTMA, When the sorbed HDTMA molecules form admicelles, negatively-charged chromate has an affinity for the positively-charged HDTMA head group.

  • PDF

Pulsed UV 처리수에서의 자연유기물질, 잔류염소 및 소독부산물 생성 거동 (Behavior of Natural Organic Matter(NOM), Chlorine Residual, and Disinfection By-Products(DBPs) Formation in Pulsed UV Treated Water)

  • 손진식;한지희
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.685-692
    • /
    • 2012
  • UV technology is widely used in water and wastewater treatment. Many researches have been conducted on microbial disinfection and micro pollutant reduction with UV treatment. However, the study on NOM with UV has limited because low/medium pressure UV lamp is not sufficient to affect refractory organics such as NOM. Pulsed UV treatment using UV flash lamp can be operated in the pulsed mode with much greater peak intensity. The pulse duration is typically in microseconds, whereas the interval between pulses is in the order of milliseconds. The high intensity of pulsed UV would mineralize NOM itself as well as change the characteristics of NOM. Chlorine demand and DBPs formation is affected on the changed amounts and properties of NOM. The objective of this study is to investigate the effect on NOM, chlorine residual, and chlorinated DBPs formation with pulsed UV treatment.

자생 수목 그루터기를 이용한 자연식생복원 녹화공법 연구(I) (A Study on Revegetation Measures with Recycling Root-stock of Native Tree(I))

  • 오구균;권태호;배중남;박석곤
    • 한국환경복원기술학회지
    • /
    • 제6권5호
    • /
    • pp.28-39
    • /
    • 2003
  • This study was carried out to elucidate effective restoration measures for natural forest with recycling native tree un site from November 2001 to October 2002 to obtain a basic information for revegetation measure, eight experimental treatment was done and the length of stump, root-ball size of stump, antisepsis treatment of trunk cut, Planting season and contents of organic matter in soil were effective on regrowth of root-stock. Thirteen tree species including Quercus acutissima among twenty tree species showed outstanding sprout and survival rate(over 90 percent), Planting in November and combinated planting with 5 trees and 9 shrubs of root-stock per 100$m^2$ plot showed a good growth. And 10 percent of organic matter plot showed a good crown coverage.

Fe(II)을 이용한 Cr(Ⅵ) 환원시 천연유기물의 영향 (Effects of Natural Organic Matter (NOM) on Cr(Ⅵ) reduction by Fe(II))

  • 한인섭
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.81-84
    • /
    • 1999
  • The aqueous geochemical characteristics of Cr(III) and Cr(Ⅵ) in environmental systems are very different from one another: Cr(Ⅵ) is highly soluble, mobile and toxic relative to Cr(III) Reduction of Cr(Ⅵ) to Cr(III) are beneficial in aquatic systems because of the transformation of a highly mobile and toxic species to one having a low solubility in water, thus simultaneously decreasing chromium mobility and toxicity. Fe(II) species are excellent reductants for transforming Cr(Ⅵ) to Cr(III), and in addition, keeping Cr(III) concentrations below the drinking water standard of 52 ppb at pH values between 5 and 11. Investigations of the effects of NOM on Cr(Ⅵ) reduction are for examining the feasibility of using ferrous iron to reduce hexavalent chromium in subsurface environments. Experiments in the presence of soils, however, showed that the solid phase consumes some of the reducing capacity of Fe(II) and makes the overall reduction kinetics slower. The soil components bring about consumption of the ferrous iron reductant. Particular attention is devoted to the complexation of Fe(II) by NOM and the subsequent effect on Cr(Ⅵ) reduction. Cr(Ⅵ) reduction rate by Fe(II) was affected by the presence of NOM (humic acid), The effects of humic acid was different from the solution pH values and the concentration of humic acid. It was probably due to the reactions between humic acid and Cr(Ⅵ), humic acid and Fe(II), and between Cr(Ⅵ) and Fe(II), at each pH.

  • PDF

수환경 특성에 따른 은과 이산화티탄 나노입자의 응집 특성 연구 (Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment)

  • 임명희;배수진;이용주;이성규;황유식
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.571-579
    • /
    • 2013
  • The aggregation behaviors of silver nanoparticles (AgNPs) and titanium dioxide ($TiO_2$) nanoparticles were investigated. Time-resolved dynamic light scattering (DLS) was used to study the initial aggregation of AgNPs and $TiO_2$ over a range of mono (NaCl) and divalent ($CaCl_2$) electrolyte concentrations. The effects of pH, initial concentration of NPs and natural organic matters (NOM) on the aggregation of NPs were also investigated. The aggregation of both nanoparticles showed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type behavior. Divalent electrolyte was more efficient in destabilize the AgNPs and $TiO_2$ than monovalent electrolyte. The effect of pH on the aggregation of AgNPs was not significant. But the aggregation rate of $TiO_2$ was much higher with increasing pH. Higher NPs concentration leads to faster aggregation. Natural organic matter (NOM) was found to substantially hinder the aggregation of both AgNPs and $TiO_2$. This study found that the aggregation behavior of AgNPs and $TiO_2$ are closely associated with environmental factors such as ionic strength, pH, initial concentration of NPs and NOM.

유기자원 연용이 유기농 옥수수 밭토양의 화학성과 옥수수 수량에 미치는 영향 (The Effect of Organic Materials Application on Soil Chemical Properties and Yield of Corn in Organic Upland Soil)

  • 공민재;안필균;정정아;이초롱;이상민;안난희
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1239-1248
    • /
    • 2020
  • This study performed to conduct a test to increase the amount of appropriate organic matter input to organic upland soil, soil fertility, and its effect on the chemical changes and yield of corn in soil due to organic use. The pH level of the T1, T5, and T6 treatment zones where livestock excreta was used was raised to 6.0-6.5, the optimal range of the soil in Korea, and it was confirmed that the pH value was appropriate. Electrical Conductivity (EC), organic content (OM), and total nitrogen (T-N) were also identified as a trend of continuous increase. The quantity of corn gradually increased from 74.1% to 96.4% over the four-year period with the use of organic materials compared to the beginning of the test, and the utilization efficiency of nitrogen has also increased. The results of the study were found to have been able to examine the increase in quantity and changes in soil chemistry through crop cultivation using organic materials such as natural materials, green manure crops, and livestock manure compost, and it is also believed that the changes due to various factors such as soil environment, soil microbes, and climate conditions need to be made through continuous research.