Investigation of Photocatalytic Process on Removal of Natural Organic Matter in Nanofiltration Process

광촉매 공정에 의한 유기물 제거가 나노여과 공정에 미치는 영향

  • Lee, Kew-Ho (Membrane & Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, In-Hwan (Membrane & Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, In-Chul (Membrane & Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Min, Byoung-Ryul (Department of Chemical Engineering, Yonsei University)
  • 이규호 (한국화학연구원 분리막다기능소재연구센터) ;
  • 최인환 (한국화학연구원 분리막다기능소재연구센터) ;
  • 김인철 (한국화학연구원 분리막다기능소재연구센터) ;
  • 민병렬 (연세대학교 화학공학과)
  • Published : 2007.09.30

Abstract

This research investigated the effect of a photocatalytic reaction on nanofiltration(NF) membrane fouling by natural organic matter(NOM). The photocatalytic degradation was very effective for destruction and transformation of NOM and was carried out by titanium dioxide($TiO_2$) and $TiO_2$-immobilized bead as a photocatalyst. In order to compare their phtocatalytic properties, the photocatalytic degradation of humic acid in the presence of calcium ion was used as a model reaction. After the photocatalytic degradation the membrane fouling was dramatically decreased.

광촉매 반응이 자연유기물에 의한 나노여과막의 오염에 미치는 영향을 살펴보았다. 광촉매 분해공정은 자연유기물의 분해와 변형에 효율적이었으며 이산화티타늄과 고정화 비드를 광촉매로 사용하였다. 광촉매적 특성을 비교하기 위하여 칼슘 이온 존재 시의 휴민산의 광분해를 모델 반응으로 설정하였다. 광분해 전에는 치밀한 막오염층이 형성되어 막오염을 가속화시킨 반면, 광분해 후에는 막오염이 크게 감소하였다.

Keywords

References

  1. A. I. Schafer, A. G. Fane, and T. D. Waite, 'Nanofiltration of natural organic matter: removal, fouling and the influence of multivalent ions', Desalination, 118, 109 (1998) https://doi.org/10.1016/S0011-9164(98)00104-0
  2. A. Braghetta, F. A. DiGiano, and W. P. Ball, 'NOM accumulation at NF membrane surface: impact of chemistry and shear', J. Environ. Eng. Div. ASCE, 124, 1087 (1998) https://doi.org/10.1061/(ASCE)0733-9372(1998)124:11(1087)
  3. S. Hong and M. Elimelech, 'Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes', J. Membr. Sci., 132, 159 (1997) https://doi.org/10.1016/S0376-7388(97)00060-4
  4. M. M. Clark and P. Lucas, 'Diffusion and partitioning of humic acid in a porous ultrafiltration membrane', J. Membr. Sci., 143, 13 (1998) https://doi.org/10.1016/S0376-7388(97)00332-3
  5. T. Thorsen, 'Removal of humic substances with membranes system, use and experiences', Proceedings of membrane technology conference on American Water Works Association, 131, (1993)
  6. J. Mallevialle, C. Anselme, and O. Marsigny, 'Effects of humic substances on membrane processes, in: I. H. Suffet and P. MacCarthy (Ed.), Aquatic Humic Substances: Influence onFate and Treatment of Pollutants', ACS, Washington DC, pp. 749-767 (1989)
  7. V. Lahoussine-Turcaud, M. R. Wiesner, and J. Y. Bottero, 'Fouling in tangential-flow ultrafiltration: effect of colloid size and coagulation pretreatment', J. Membr. Sci., 52, 173 (1990) https://doi.org/10.1016/S0376-7388(00)80484-6
  8. L. Sanchez, J. Peral, and X. Domenech, 'Photocatalyzed destruction of aniline in UV-illuminated aqueous $TiO_2$ suspensions', Electrochimica. Acta, 42(12), 1877 (1997) https://doi.org/10.1016/S0013-4686(96)00400-8
  9. D. Chen and A. K. Ray, 'Photodegradation kinetics of 4-nitrophenol in $TiO_2$ suspension', Water Res., 32(11), 3223 (1998)
  10. M. Bekbolet, A. S. Suphandag, and C. S. Uyguner, 'An investigation of the photocatalytic efficiencies of $TiO_2$ powders on the decolourisation of humic acids', J. Photochem. Photobiol. A: Chem., 148, 121 (2002) https://doi.org/10.1016/S1010-6030(02)00081-3
  11. A. Yaroshchuk and E. Staude, 'Charged membranes for low pressure reverse osmosis properties and applications', Desalination, 86(2), 115 (1992) https://doi.org/10.1016/0011-9164(92)80029-9
  12. R. J. Petersen, 'Composite reverse osmosis and nanofiltration membranes: Review', J. Memb. Sci., 83, 81 (1993) https://doi.org/10.1016/0376-7388(93)80014-O
  13. A. Braghetta, 'The influence of solution chemistry operating conditions on nanofiltration of charged and uncharged organic macromolecules', Ph.D. Dissertation, Univ. of North Carolina, Chapel Hill (1995)
  14. M. Nystrom, L. Kaipia, and S. Luque, 'Fouling and retention of nanofiltration membranes', J. Membr. Sci., 98, 249 (1995) https://doi.org/10.1016/0376-7388(94)00196-6
  15. W. Wei and A. L. Zydney, 'Humic acid fouling during ultra-filtration', Environ. Sci. Technol., 34, 5043 (2000) https://doi.org/10.1021/es0012366
  16. J. W. Cho, G. Amy, and J. Pellegrino, 'Membrane filtration of natural organic matter: comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes', Desalination, 127, 283 (2000) https://doi.org/10.1016/S0011-9164(00)00017-5
  17. D. F. Ollis, E. Pelizzetti and N. Serpone, 'Photocatalyzed destruction of water contaminants', Environ. Sci. Technol., 25(9), 1522 (1991)
  18. A. K. Ray and A. A. C. M. Beenackers, 'Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis', AIChE J., 43(10), 2571 (1997) https://doi.org/10.1002/aic.690431018
  19. M. S. Chandrakanth and G. L. Amy, 'Effects of NOM source variations and calcium complexation capacity on ozone-induced particle destabilization', Water Res., 32(1), 115 (1998) https://doi.org/10.1016/S0043-1354(97)00104-8
  20. A. Pihlajamaki, P. Vaisanen, and M. Nystrom, 'Characterization of clean and fouled polymeric ultrafiltration membranes by Fourier transform IR spectroscopy-attenuated total reflection', Colloids Surf. A Physicochem. Eng. Aspects, 138(2-3), 323 (1998)
  21. H. Zhu and M. Nystrom, 'Cleaning results characterized by flux, streaming potential and FTIR measurements', Colloids Surf. A Physicochem. Eng. Aspects, 138(2-3), 309 (1998)