• Title/Summary/Keyword: Natural Motion

Search Result 1,206, Processing Time 0.028 seconds

The Design and experiment of 5G-based metaverse motion synchronization system (5G 기반의 메타버스 모션 동기화 시스템의 설계 및 실험)

  • Lee Sangyoon;Lee Daesik;You, Youngmo;You, Hyeonsoo;Lee, Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.61-75
    • /
    • 2023
  • In this paper, we design and experiment a 5G-based metaverse motion synchronization system with configuration of a mobile motion capture studio that has not been commercialized at home and abroad. As a result of the experiment, the average value of the latency test measurement using Wi-Fi is 0.134 seconds faster than the average latency test measurement value using the 5G network. Existing motion capture studios have spatial limitations as the motion capture range is limited to the Wi-Fi communication range. However, the 5G-based metaverse motion synchronization system configures a mobile motion capture studio so that motion performers can solve the spatial limitations by expanding the motion capture communication range indefinitely regardless of time and place. Therefore, it is possible to implement realistic metaverse contents by displaying a realistic and natural digital human because it is free from spatial constraints. The system which was tested in this paper can create a new business model by converging next-generation technologies that are receiving attention related to the digital virtual world, such as motion capture + 5G + digital human twin + metaverse. And it allows for research and develop a next-generation metaverse-based broadcasting solution at a recent time when the business value of digital human and metaverse technologies and functions has been proven and related sales are growing in earnest.

Kinect-based Motion Recognition Model for the 3D Contents Control (3D 콘텐츠 제어를 위한 키넥트 기반의 동작 인식 모델)

  • Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • This paper proposes a kinect-based human motion recognition model for the 3D contents control after tracking the human body gesture through the camera in the infrared kinect project. The proposed human motion model in this paper computes the distance variation of the body movement from shoulder to right and left hand, wrist, arm, and elbow. The human motion model is classified into the movement directions such as the left movement, right movement, up, down, enlargement, downsizing. and selection. The proposed kinect-based human motion recognition model is very natural and low cost compared to other contact type gesture recognition technologies and device based gesture technologies with the expensive hardware system.

Constant Quality Motion Compensated Temporal Filtering Video Compression using Multi-block size Motion Estimation and SPECK (다중 블록 크기의 움직임 예측과 SPECK을 이용한 고정 화질 움직임 보상 시간영역 필터링 동영상 압축)

  • Park Sang-Ju
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.153-163
    • /
    • 2006
  • We propose a new video compression method based on MCTF(motion compensated temporal filtering) with constant quality. SPECK is an efficient image compression coding method of encoding DWT coefficients. Especially SPECK method is very efficient for coding the motion compensated residual image which usually has larger amounts of high frequency components than the natural images. And proposed multi block size hierarchical motion estimation technique is more efficient than classical block matching algorithm with fixed block size both in estimation precision and operation costs. Proposed video method based on MCTF video compression can also support multi-frame rate decoding with reasonable complexity. Simulation results showed that proposed method outperforms H.263 video compression standard.

Study on the Dynamic Torsional Instability of a Thin Beam (비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구)

  • 박진선;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

A Linearization Method for Constrained Mechanical System (구속된 다물체시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Yang, Seong-Ho;Seo, Jun-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

A Linearization Method for Constrained Mechanical Systems (구속된 다물체 시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Choi, Jin-Hwan;Kim, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions (장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.

Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass (끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.

Modeling the Dual-Fuel Combustion of Natural Gas and Pilot Distillate Injected Directly into a Diesel Combustion Bomb (디젤연소용기에 직접분사된 천연가스와 파일럿오일의 복합연소 모델링)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.155-164
    • /
    • 1996
  • Dual-fuel engines are being researched with emphasis on the possible types of natural gas supply systems. Hence, a three-dimensional combustion model by using finite volume method was developed to provide a fundamental understanding of the auto-ignition of pilot distillate and subsequent burning of natural gas, when the natural gas as well as the distillate was directly injected into a quiescent diesel engine like combustion bomb tests and the numerical results were investigated for the mixed combustion phenomena. With high-pressure natural gas injection, it was found that the gaseous fuel injection characteristics had to be well harmonised with that of the pilot distillate. For better combustion efficiency, however, further researches are required for the optimisation of injection system in the existence of air motion.

  • PDF